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ABSTRACT 

Action video games (AVGs) offer a powerful experimental paradigm for investigating 

how sustained cognitive demands reshape the brain’s structural and functional organization. 

Long-term AVG players—referred to in this dissertation as gamers—engage in high-stakes, fast-

paced environments that require rapid transformation of visuomotor information into action 

selection and adaptive decision-making under uncertainty. Prior research has identified several 

cognitive enhancements in gamers, including faster response times and improved visuomotor 

coordination; however, it has lacked mechanistic insight into how the brain from prolonged 

engagement while playing AVGs orchestrates neuroplastic refinements that give rise to these 

advantages.  

This dissertation presents a multi-faceted investigation of neuroplasticity in gamers, 

across three complementary studies. First, a targeted network analysis revealed enhanced 

structural and functional connectivity in the dorsal visual streams of gamers. The functional 

enhancements, both undirected and directed functional connectivity measures, correlated with 

faster response times. Second, a structurally constrained framework assessed how anatomical 

connectivity constrains functional and directed interactions. Gamers exhibited connectivity 

patterns consistent with a shift from feedback-driven object-in-place, iterative corrections to a 

more anticipatory, feedforward strategy, facilitating streamlined visuomotor transformation, 

scene integration, attentional control, and adaptive action selection compared with non-gamers. 

Third, a novel principal component analysis (PCA) method revealed that gamers exhibited a 

stronger convergence of top-down cognitive clarity, learned value-to-action transformation, and 

bottom-up motor readiness, factors that were each associated with improved response times.  



Across these three studies, findings support a proposed framework underlying the 

observed neuroplastic refinements: Cognitive Resource Reallocation (CRR). While prior 

research has discussed resource reallocation, this dissertation is the first to formally define CRR 

as a dynamic neurophysiological process embedded in physically lawful neural dynamics. It 

describes how functional and metabolic resources are redistributed in response to cognitive strain 

to support behaviorally relevant processes more effectively. CRR provides a unifying theoretical 

lens to explain how long-term gameplay leads to the targeted refinement of neural circuits that 

enable efficient visuomotor decision-making. More broadly, this work positions action video 

games as an ecologically valid paradigm for studying adaptive neuroplasticity, with implications 

for cognitive training, rehabilitation, and performance enhancement. 
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indicated by p-values. (b) 3D renderings of the respective regions for Gamers (left) and 

Non-Gamers (right), highlighting the anatomical locations where significant connectivity 

differences were observed, are shown. The brain regions shown are left mid-temporal 

gyrus, left inferior temporal gyrus, left parahippocampus, left superior temporal pole, 

right insula, and right orbitofrontal cortex. The renderings were created using the AAL3 

atlas and visualized in DSI Studio. ................................................................................... 90 

Figure 4.4 Group Differences in Binarized Undirected Connectivity Network Metrics and Brain-

Behavior Correlations. (a) Violin plots depicting group differences in binarized directed 

functional connectivity network metrics, including (i-vii) local efficiency and (ix-xii) 

node degree, for gamers and non-gamers.(b) Spearman correlations between directed 

functional connectivity network metrics and response times. Negative correlations 

indicate an association with faster responses, while positive correlations reflect an 

association with slower responses. Region names are taken from the AAL3 atlas. ......... 93 

Figure 4.5 Group Differences in Binarized Directed Connectivity Network Metrics and Brain-

Behavior Correlations. (a) Violin plots depicting group differences in binarized directed 

functional connectivity network metrics, including (i-vii) local efficiency and (ix-xii) 

node degree, for gamers and non-gamers.(b) Spearman correlations between directed 

functional connectivity network metrics and response times. Negative correlations 

indicate an association with faster responses, while positive correlations reflect an 

association with slower responses. Region names are taken from the AAL3 atlas .......... 96 

Figure 5.1 Top 20 PCA Selected ROIs from FC and dFC Explained Variance. Principal 

component analysis (PCA) was applied to undirected functional connectivity (FC) and 

directed functional connectivity (dFC), with dFC further decomposed into total, sender, 
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and receiver modes. ROIs names taken from the AAL3 atlas were ranked by their 

contribution to across-subject variance, and the top 20 were selected based on a 

cumulative 80% explained variance threshold. (a) FC: undirected Pearson correlations. 

(b) dFC total: summed Granger causality across source and target roles. (c) dFC sender: 

variance from outgoing influences. (d) dFC receiver: variance from incoming influences. 

This decomposition highlights asymmetric functional dynamics and distinguishes ROIs 

involved in information transmission versus reception. ................................................. 127 

Figure 5.2  Functional Connectivity Differences Involving Top PCA ROIs (a) Whole-brain FC 

matrix showing significant group differences (p < 0.05, uncorrected), organized by 

anatomical region.(b) Validation of the PCA-based method involved (i) Spearman’s rank 

correlation (ρ) across top-n selections comparing PCA-weighted and raw variance-based 

rankings; (ii) Comparison of statistical sensitivity using Spearman correlation, 

hypergeometric overlap p-values, and permutation-derived p-values between PCA- and 

raw-ranked ROIs; (iii) Overlap between PCA- and raw-ranked ROIs increases 

systematically with top-n selections; (iv) PCA-selected ROI overlap exceeds chance 

across 10,000 permutations. Region names are taken from the AAL3 atlas .................. 130 

Figure 5.3 Directed connectivity differences involving top PCA ROIs. Group-level differences in 

directed functional connectivity (dFC) between gamers and non-gamers based on PCA-

derived regions of interest. Each panel displays the dFC matrix of significant group 

differences (p < 0.05), selection stability validation, and violin plots highlighting the 

strongest effects. Panel (a) shows sender-mode results reflecting group differences in 

outgoing influence, including a connection from the left superior anterior cingulate cortex 

to the right ventrolateral thalamus that survived FDR correction (q < 0.05), alongside 
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uncorrected effects from the right ventral tegmental area to cerebellar and thalamic 

targets. Panel (b) presents receiver-mode results indicating group differences in incoming 

influence, with effects observed in the left cerebellar lobule 3 (from the right VTA and 

right ventrolateral thalamus) and the left superior anterior cingulate cortex (from the right 

locus coeruleus). Panel (c) shows total influence results, combining sender and receiver 

roles, with significant effects involving the left superior anterior cingulate cortex, the 

right substantia nigra pars compacta, and the left cerebellar lobule 3. ........................... 133 

Figure 5.4 Structural connectivity differences filtered by top PCA ROIs Group-level structural 

connectivity (SC) differences between gamers and non-gamers across four diffusion MRI 

measures, limited to regions of interest (ROIs) identified through PCA-based selection 

from the AAL3 atlas. Each panel presents the SC matrix of significant group differences 

(p < 0.05), validation of selection stability, and violin plots highlighting the strongest 

effects. Panel (a) shows uncorrected differences in fractional anisotropy (FA) between the 

left calcarine cortex and the left superior occipital gyrus. Panel (b) displays axial 

diffusivity (AD) differences involving the left superior medial frontal gyrus and the left 

mid-cingulate cortex. Panel (c) illustrates isotropy (ISO) differences in connections 

between the lingual gyrus and cerebellar lobule 6. Panel (d) shows corresponding 

differences in non-restricted diffusion imaging (NRDI) across the same regions. ......... 136 

Figure 5.5 SFC and SdFC (Sender) Coupling Differences Involving Top PCA ROIs. Group-level 

differences in structure–function coupling strength between gamers and non-gamers, 

using rcPCA-derived ROI selections from the AAL3 atlas.(a) SFC coupling: Significant 

effects (p < 0.05) were observed across multiple structural measures—including mean 

diffusivity (MD), mean length, fractional anisotropy (FA), and quantitative anisotropy 
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(QA)—involving Vermis 3, Vermis 9, and Cerebellum 10L. (b) SdFC (sender) coupling: 

Significant group differences emerged in Vermis 7 across intensive diffusion measures 

(AD, ISO, RDI), and in Calcarine cortex (bilaterally), ACC sup L, Frontal Med Orb L, 

and Paracentral Lobule R across extensive measures (count, ncount, ncount2). ROI 

selection and validation followed the same rcPCA-based procedure used in other 

connectivity modalities. A significant FDR-corrected effect (q = 0.048) was observed in 

Vermis 7–AD SdFC sender coupling. ............................................................................ 139 

Figure 5.6 Brain–Behavior Correlations Across Connectivity Modalities. Connectivity strength 

and structure–function coupling among PCA-derived ROIs from the AAL3 atlas were 

significantly associated with response time. Negative correlations reflect faster 

performance. (a) In functional connectivity, faster responses were linked to stronger 

connectivity between the red nucleus and right pulvinar thalamus, while slower responses 

were associated with enhanced connectivity across midbrain–thalamic–cerebellar 

pathways.(b) In directed connectivity, slower responses corresponded to greater influence 

among midbrain (VTA R, SN pc R), thalamic (Thal VL R), cerebellar, and left 

supracallosal anterior cingulate regions.(c) In structural connectivity, slower responses 

were linked to higher FA between the left calcarine cortex and superior occipital gyrus, 

while faster responses were associated with reduced FA between the left 

parahippocampal and precuneus and decreased AD between the superior temporal pole 

and inferior frontal gyrus.(d) In structure–function coupling, stronger SC–FC and SC–

dFC coupling in mid-occipital, frontal, and anterior cingulate regions tracked with faster 
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1 INTRODUCTION 

Video games have emerged as one of the most widely consumed and cognitively 

engaging forms of interactive media in the world, with more than 3.2 billion players globally in 

2023 (Media & Entertainment: Video Games Sector, 2024). Among these, action video games 

(AVGs), characterized by their fast-paced, perceptually demanding, and motor-intensive 

gameplay, offer a unique platform for studying how sustained environmental challenges shape 

brain function. Long-term AVG players referred to throughout this dissertation as ‘gamers’ are 

placed in dynamic, goal-oriented environments that demand rapid decision-making, attentional 

switching, visuospatial tracking, and complex motor coordination. Long-term exposure to such 

cognitive demands has been linked to measurable improvements in visuomotor performance and 

cognitive flexibility (Basak et al., 2008; Green & Bavelier, 2012; Glass et al., 2013; Howard et 

al., 2023; Lynch et al., 2010). 

These cognitive benefits have been shown to translate beyond the virtual environment, 

supporting improved performance in real-world domains such as surgical precision (Rosser et 

al., 2007), driving safety (Howard et al., 2023), military training (Orvis et al., 2010), and even 

literacy improvement in individuals with dyslexia (Bertoni et al., 2024). AVGs have also gained 

traction as cognitive training tools, with a notable clinical example being EndeavorRx, the first 

FDA-approved prescription digital therapeutic designed to help reduce attentional deficits in 

children with ADHD (Oh et al., 2024). Complementing behavioral studies, a growing number of 

neuroimaging investigations have linked AVG play to changes in brain structure and function. 

Reported adaptations include increases in gray matter volume (Kühn & Gallinat, 2014), cortical 

thickness (Kühn, Lorenz, et al., 2014), and white matter coherence (Cahill et al., 2024; 

Lewandowska et al., 2022) as well as shifts in functional and directed connectivity within 
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attention, visual, and motor circuits(Brilliant et al., 2019; T. Jordan & M. Dhamala, 2022; Palaus 

et al., 2017). These neural findings provide compelling evidence for experience-driven 

neuroplasticity in systems supporting perceptual decision-making and goal-directed behavior. 

Yet despite this promising body of work, many unanswered questions remain. Prior 

studies often rely on either structural or functional data in isolation, lack direct cognitive testing 

to measure transfer effects, or report descriptive rather than mechanistic findings (Brilliant et al., 

2019; Bediou et al., 2023). Few have integrated multimodal neuroimaging (e.g., SC, FC, dFC) 

within a unified framework, especially in healthy, non-addicted populations, or tested whether 

observed network differences systematically align with behavior. This has left a gap in the 

literature regarding how localized neural changes give rise to coordinated, system-level 

dynamics that support cognitive performance. 

To bridge this gap, this dissertation introduces a guiding theoretical model, Cognitive 

Resource Reallocation (CRR). CRR is defined as the dynamic redistribution of metabolic and 

functional neural resources toward behaviorally relevant, anatomically plausible neural circuits 

and away from redundant or inefficient processes. The CRR framework is supported by prior 

research demonstrating that environmental pressure can drive neuroplastic adaptation in task-

relevant networks (Barbot et al., 2021; Buhusi & Meck, 2009; Taylor et al., 2023).  This 

reallocation occurs when task demands result in strained baseline support, producing cognitive 

friction during sustained engagement motivated by goal-directed or reward-seeking behaviors. In 

response, the brain reallocates energy over time to support task efficiency by upregulating task-

relevant circuits and downregulating those that are inefficient or redundant, resulting in 

functional optimization. 
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In the context of AVG play, the “task” is not simply pressing buttons or responding to 

screen flashes. It is a prolonged, socially meaningful pursuit of performance under pressure—

tracking fast-moving targets, managing risk, coordinating timing, and adapting strategy. Success 

in this environment depends not just on raw reaction time but on how quickly and precisely the 

brain can predict, select, and execute contextually appropriate actions. CRR posits that long-term 

AVG exposure encourages the brain to allocate its resources toward anticipatory, feedforward 

mechanisms that reduce visuomotor surprise, defined as the mismatch between expected and 

actual visual or motor feedback during decision-making.  

In doing so, neural systems over time reorganize to reduce internal conflict and 

streamline action selection under uncertainty. This process gradually results in more optimized 

visuomotor pathways whereby visual input is more efficiently transformed into motor output, 

with reduced internal conflict and faster resolution of uncertainty. Conversely, non-gamers may 

rely more on compensatory or feedback-heavy processing, devoting more resources to early 

visual regions and less efficient action selection circuits. This aligns conceptually with the goal 

of attaining a more energetically efficient, low-surprise state, reducing cognitive friction 

associated with prediction error, and thus more closely aligning with the free-energy minimizing 

regime proposed by Dr. Karl Friston’s Free Energy Principle (Friston, 2010; Friston & Kiebel, 

2009). 

While this dissertation does not directly quantify visuomotor surprise, it tests whether neural 

signatures are consistent with CRR predictions, including enhanced structural and functional 

connectivity in task-relevant circuits, reduced reliance on compensatory or non-task-relevant 

networks, and greater behavioral efficiency in these circuits, reflected in faster response times 

without accuracy loss. 
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The central hypothesis for this dissertation is that under repeated high-demand 

conditions, such as those found in action video games, the brain gradually reallocates its finite 

energetic resources to reinforce task-relevant circuits. This adaptive neuroplastic refinement 

enhances decision-making efficiency by reducing uncertainty and improving task performance. 

In tasks like our moving dots paradigm, where the outcome is uncertain (e.g., a 50/50 

probability), it is suspected that gamers anticipate both possibilities more readily. This enhanced 

capacity to manage multiple potential outcomes reflects greater cognitive flexibility (Glass et al., 

2013) and attentional control (Bavelier & Green, 2019; Bavelier & Green, 2025), features 

consistently observed in gamers. Such adaptations would be reflected in connectivity patterns 

that facilitate feedforward, goal-directed action selection in response to task instructions (i.e., 

perform as accurately and quickly as possible), while also integrating scene-specific, contextual 

cues, such as relative motion, that help resolve uncertainty more efficiently. 

If confirmed, the findings of this project would offer a necessary and sufficient 

explanation for the improved speed–accuracy tradeoffs observed in gamers. This adaptation 

likely results from the repeated need to make rapid, high-stakes decisions during gameplay. The 

results would also support CRR as a mechanistic account of the cognitive advantages seen in 

gamers and help identify candidate pathways undergoing neuroplastic refinement. These 

pathways may serve as targets for cognitive training strategies and interventions aimed at 

improving visuomotor decision-making through action video game–based training or therapy. 
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To empirically evaluate CRR, this dissertation integrates three complementary 

methodological approaches, each designed to capture distinct aspects of brain network 

organization utilizing both structural and functional connectivity.  

Chapter 3 focuses on a specific task-relevant regional network, the dorsal and ventral 

visual streams. Using predefined anatomical regions of interest (ROIs), this analysis tests 

whether gamers show enhanced visuomotor integration and faster decision-making, as predicted 

by stream-specific neuroplastic adaptation. Building on this targeted analysis, Chapter 4 expands 

the scope to the whole brain using a tractography constrained connectivity framework. By 

restricting analysis to biologically viable white matter pathways, this approach improves both 

interpretability and statistical power, enabling a focused investigation of functional connectivity 

(FC) and dynamic functional connectivity (dFC) across broader neural systems. Chapter 5 

introduces a data-driven principal component analysis (PCA) framework designed to identify 

high-information ROIs across modalities. This technique reduces the multiple comparisons 

burden and enhances sensitivity to structured intersubject variability, allowing for the detection 

of meaningful patterns of neural reorganization that align with enhanced visuomotor decision 

making. 

Each approach is optimized for a specific tradeoff between network specificity (Chapter 

3), whole-brain anatomical plausibility (Chapter 4), and whole-brain statistical efficiency 

(Chapter 5). Together, these modes of analysis test whether adaptive reallocation patterns 

consistent with CRR emerge across structural and functional data and whether they reliably align 

with improved visuomotor decision-making observed in gamers. 
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In summary, this dissertation investigates how long-term action video game play shapes 

brain network architecture and cognitive performance. Through multimodal neuroimaging, 

connectivity analysis, and a unifying theoretical model, it offers a structured, mechanistic 

account of how experience-driven plasticity supports enhanced visuomotor decision-making. By 

introducing CRR as a generalizable principle of experience-driven neuroplastic adaptation and 

validating it across multiple modalities, this work contributes both novel methods and 

foundational theory to the emerging science of cognitive optimization. 
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2 MATERIALS AND METHODS 

2.1 Materials and Data Acquisition 

2.1.1 Participant Data and Demographics 

A total of 47 right-handed participants were recruited for this study, comprising 28 

gamers  (24 male, 4 female) and 19 non-gamers (7 male, 12 female). The groups were age-

matched (gamers: 20.6 ± 2.4 years; non-gamers: 19.9 ± 2.6 years). Participants were classified as 

gamers if they reported playing action video games for 5 or more hours per week over the past 

two years. Game genres included First-Person Shooter (FPS), Real-Time Strategy (RTS), 

Multiplayer Online Battle Arena (MOBA), and Battle Royale (BR), in alignment with industry 

demographics and prior categorization standards (Green & Bavelier, 2003, 2007, 2015; Gao et 

al., 2018; Stewart et al., 2020). Non-gamers reported playing less than 30 minutes per week on 

average during the same time frame. 

To confirm eligibility and assign participants to the appropriate group, a questionnaire 

was administered assessing video game genre and play frequency over the past two years. All 

participants passed the Ishihara Test for Color Deficiency and completed informed consent and 

health screening forms before data collection. The study was approved by the Institutional 

Review Boards of Georgia State University and the Georgia Institute of Technology, both 

located in Atlanta, Georgia. Cohort classification, task design, and additional recruitment 

procedures followed those originally reported in Jordan (2021). 

2.1.1.1 Study-Specific Participant Pool 

While the same general participant cohort was used across all analyses, final sample sizes 

varied slightly across imaging modalities due to modality-specific quality control procedures. 
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Subjects were excluded on a per-modality basis if their data did not meet predefined quality 

criteria (e.g., motion artifacts in fMRI, low signal-to-noise in DWI reconstructions). Specific 

sample sizes for each analysis are reported in the relevant methods subsections. 

2.1.1.1.1 Brain Network Analysis: The Visual Streams  

 One gamer from the structural connectivity analysis, due to incomplete tractography 

data, and one non-gamer from the functional connectivity analysis, due to incomplete fMRI data. 

Two additional subjects’ data (one gamer and one non-gamer) were excluded from the brain-

behavior regressions due to incomplete response time data. The effective number of participants 

for the functional connectivity analysis was 46 total participants (28 gamers and 18 non-gamers), 

with 44 total participants (27 gamers and 17 non-gamers) for brain-behavior regression between 

functional connectivity measures with response time. The effective number of participants for 

the structural connectivity analysis was 46 total participants (27 gamers and 19 non-gamers), 

with 44 total participants (26 gamers and 18 non-gamers) for brain-behavior regression between 

structural connectivity measures with response time. 

2.1.1.1.2 Whole Brain Analysis: Tractography Constrained Functional and Directed 

Connectivity  

After initial recruitment of 47 participants (28 gamers, 19 non-gamers), a subset of 

subjects was excluded based on modality-specific data quality thresholds. One participant was 

excluded from the SC-FC and SC-TGC analyses due to unusable structural connectivity data. 

Three participants were excluded from FC analysis due to excessive head motion, ensuring 

reliable functional connectivity estimation. For the brain–behavior regressions, two additional 

subjects were excluded due to missing response time data. This resulted in a final analytic 

sample of n = 42 for SC-FC and SC-TGC connectivity analyses and n = 40 for brain–behavior 
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regression models. While this modest reduction in sample size slightly reduced statistical power, 

it ensured that all included data met rigorous quality control standards, thereby enhancing the 

reliability of observed effects. 

2.1.1.1.3 Whole Brain Analysis: PCA-Based ROI Selection  

After preprocessing and quality control, the final sample size varied slightly by modality. 

Functional and directed functional connectivity (FC and dFC) analyses included 43 participants 

(25 gamers and 18 non-gamers), while brain–behavior correlations using FC and dFC included 

41 participants (24 gamers and 17 non-gamers). Structural connectivity (SC) analyses included 

46 participants (27 gamers and 19 non-gamers), with 44 participants (26 gamers and 18 non-

gamers) used in SC brain–behavior analyses. Finally, SC–FC and SC–dFC coupling analyses 

included 42 participants (24 gamers and 18 non-gamers), and the corresponding brain–behavior 

coupling analyses included 40 participants (23 gamers and 17 non-gamers). 

2.1.2 MRI Scanning Protocols 

Whole-brain structural and functional MR imaging was conducted on a 3T Siemens 

Magnetom Prisma MRI scanner (Siemens, Atlanta, GA, USA) at the joint Georgia State 

University and Georgia Institute of Technology Center for Advanced Brain Imaging, Atlanta, 

GA, USA. High-resolution anatomical images were acquired using a T1-MEMPRAGE scan 

sequence for voxel-based morphometry and anatomical reference. The acquisition parameters 

were as follows: TR = 2530 ms, TE1-4 = 1.69–7.27 ms, TI = 1260 ms, flip angle = 7°, and voxel 

size = 1 mm × 1 mm × 1 mm. 

Diffusion-weighted imaging (DWI) data were collected using a multi-shell diffusion 

scheme with b-values of 300, 650, 1000, and 2000 s/mm², corresponding to 4, 17, 39, and 68 

diffusion-encoding directions, respectively. One non-diffusion-weighted (b = 0) volume was also 
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included. The acquisition was performed using a single-shot echo-planar imaging (EPI) sequence 

with anterior-to-posterior (AP) phase encoding. Each diffusion volume consisted of 60 axial 

slices acquired with a 2 mm isotropic resolution (slice thickness = 2 mm, in-plane resolution = 2 

× 2 mm), and the field of view (ReadoutFOV) was 220 mm. The diffusion data acquisition was 

approximately 6.5 minutes. Acquisition parameters for the diffusion imaging included TR = 

2750 ms and TE = 79 ms. Functional imaging was performed using a T2-weighted gradient 

echo-planar imaging (EPI)* sequence during the behavioral tasks. Four functional runs were 

acquired with the following parameters: TR = 535 ms, TE = 30 ms, flip angle = 46°, and voxel 

size = 3.8 mm × 3.8 mm × 4 mm. The field of view was 240 mm, and 32 slices were collected in 

an interleaved order with a slice thickness of 4 mm. A total of 3440 brain images were acquired 

during task performance. 

2.2 Analytical Methods and Experiment Design 

2.2.1  Experiment Design and Behavioral Results  

The experimental task used in this study was a modified version of the moving dots  left–

right discrimination paradigm originally developed and implemented as described by Jordan 

(2021) to investigate sensorimotor decision-making performance in gamers and non-gamers. The 

same design was employed here to ensure consistency in behavioral demands and fMRI task 

structure, enabling direct comparison and methodological continuity. 

This task engages a sequence of subprocesses that collectively define visuomotor 

decision-making, as outlined by Jordan (2021) and Jordan & Dhamala (2022b). The process 

begins with a visual stimulus that initiates sensory evidence accumulation, where input is 

processed and integrated; this is followed by a perceptual judgment based on sensory evidence; 
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and finally, a motor response is selected and executed based on this perceptual judgment. 

Attentional selection and control modulate this process at every stage of the decision. 

Each task block began with a cue screen indicating the color participants should attend, 

followed by the presentation of two overlapping sets of 600 MDs (one in the cued color and one 

distractor set). Participants had 3 seconds to indicate whether the cued color dots were moving 

left, right, or not at all. Motion direction and color pairings were randomized across trials, with 

difficulty manipulated via color contrast (easy, medium, hard) and motion speed (five levels, 

including a no-motion condition). Each block contained three task trials (totaling 15 seconds), 

followed by a 15-second rest period. A total of 60 task blocks were presented across four fMRI 

runs, with all combinations of difficulty and speed occurring multiple times per subject. Stimulus 

presentation was controlled using PsychoPy (Peirce et al., 2019), and participant responses were 

collected using an MR-compatible button box. 

Behavioral performance measures included response accuracy and response time. Gamers 

responded significantly faster and slightly more accurately than non-gamers particularly under 

low-difficulty and moderate-speed conditions. In the general condition, gamers responded 

significantly faster than non-gamers (930 ± 430 ms vs. 1120 ± 490 ms, p = 2.05 × 10⁻⁷⁰), with an 

average response time advantage of 190 ms. They also exhibited significantly higher task 

accuracy (95.3% ± 3.9% vs. 93.0% ± 5.6%, p = 0.0008), reflecting a 2.2% improvement in 

overall performance accuracy. 
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2.2.2 Brain Network Analysis, Visual Streams  

2.2.2.1 Regions of Interest  

In our investigation, we examined the structural and functional organization of the dorsal 

and ventral visual streams using fourteen regions of interest (ROIs) defined in a prior study from 

the Neurosynth functional meta-analysis platform (https://neurosynth.org/). The ROIs were 

derived based on relevant search terms, including "primary visual," "ventral visual," "visual 

stream," and "dorsal visual" as described by (Wong et al., 2021). The identified ROIs encompassed 

two regions situated within the primary visual cortex (V1), specifically the bilateral Calcarine 

(Calc) areas. VS (visual stream) denotes the primary connections from the Calcarine region to the 

bilateral superior and inferior occipital gyri. Additionally, we identified four ROIs within the 

ventral visual stream (VVS), which included the bilateral fusiform gyrus (FG) and inferior 

temporal gyrus (ITG). 

Moreover, four  ROIs were identified in the dorsal visual stream (DVS), encompassing the 

bilateral inferior parietal lobule (IPL) and superior parietal lobule (SPL). The nomenclature used 

in this classification was based on the Eickhoff-Zilles macro labels from N27 and was implemented 

in AFNI as described by Wong et al. (2021). We constructed a BrainNet Viewer (Xia M) 

representation of the general organization, subsystems, and the 14 ROIs along with the 12 

connections composing the visual streams shown in Figure 2.1. 

The construction of the ROIs for the structural tractography was carried out with a 12 mm 

radius to ensure the analysis accounted for anatomical variability and adequately encompassed the 

white matter tracts connecting the visual streams, thus mitigating the risk of missing important 

connections. We employed the MNI coordinate system and constructed the ROIs using the 

FSLeyes visualization tool within the FSL (FMRIB Software Library) (Jenkinson et al., 2012; 
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Woolrich et al., 2009) environment. The functional connectivity analysis utilized 6 mm radius 

ROIs using the same MNI coordinates.  

 

Table 2.1 Anatomically defined regions of interest (ROIs) used in visual stream tractography. 

Each ROI is represented by its central MNI coordinate and categorized as belonging to the dorsal 

visual stream (DVS), ventral visual stream (VVS), or shared visual system (VS). 

 

Region of Interest (ROI) MNI coordinates (x, y, z) Subsystem 

Left Superior Occipital Gyrus 
(L SOG) 

-26, -73, 23 DVS, VS 

Left Inferior Parietal Lobule   
(L IPL) 

-24, -52, 52 DVS 

Left Superior Parietal Lobule 
(L SPL) 

-30, -46, 66 DVS 

Right Superior Occipital Gyrus 
(R SOG) 

23, -91, 26 DVS, VS 

Right Inferior Parietal Lobule 
(R IPL) 

24, -48, 42 DVS 

Right Superior Parietal Lobule 
(R SPL) 

20, -68, 62 DVS 

Left Inferior Occipital Gyrus 
(L IOG) 

-42, -64, -12 VVS, VS 

Left Inferior Temporal Gyrus 
(L ITG) 

-44, -50, -15 VVS 

Left Fusiform Gyrus (L FG) -34, -48, -16 VVS 

Right Inferior Occipital Gyrus 
(R IOG) 

40, -64, -12 VVS, VS 

Right Inferior Temporal Gyrus 
(R ITG) 

48, -60, -12 VVS 

Right Fusiform Gyrus (R FG) 40, -52, -16 VVS 

Left Calcarine (L Calc) -8, -86, 6 VS 

Right Calcarine (R Calc) 8, 86, 6 VS 
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Figure 2.1 Meta-analysis derived ROIs: Visual Streams BrainNet Viewer (Xia M) representation 

of the locations of the 14 spherical ROIs and 12 connections considered that constitute the 

subsystems of the two visual streams. (Left to Right): The dorsal visual stream (DVS) extends 

from SOG to IPL and from SOG to SPL, shown in red; the ventral visual stream (VVS) extends 

from IOG to FG and from IOG to ITG, shown in yellow; and the visual stream (VS) denotes the 

primary connections from the Calcarine region, namely Calcarine to IOG and Calcarine to SOG. 
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2.2.2.2 Grey Matter Morphometry 

2.2.2.2.1 FreeSurfer Preprocessing 

Anatomical data preprocessing and morphometric parameter estimation were conducted 

by Chandrama Mukherjee (PhD student, Neurophysics Lab, GSU) under the supervision of Dr. 

Mukesh Dhamala. The full recon-all pipeline in FreeSurfer (version 7.4.1; 

https://surfer.nmr.mgh.harvard.edu) was used for cortical surface reconstruction and subcortical 

segmentation (Dale et al., 1999). Motion artifacts were corrected using intensity normalization 

and rigid-body alignment (Ségonne et al., 2004). Each subject’s brain was transformed into 

Talairach space and segmented according to the Desikan-Killiany atlas (Desikan et al., 2006). 

Additional methodological details are available in prior work (Dale et al., 1999; Fischl et al., 

2002; Fischl, 2012). All outputs—T1 volumes, skull-stripped brains, and pial surfaces—

underwent rigorous visual inspection to ensure anatomical accuracy and data quality. 

2.2.2.2.2 Data Extraction and Preparation 

Cortical thickness (CT) values and intracranial volume (ICV) were assessed using the 

FreeSurfer utilities mri_surf2surf, mris_anatomical_stats, and aparcstats2table (Fischl, 2012). 

Each brain was parcellated into 70 cortical regions (35 per hemisphere) according to the 

Desikan-Killiany atlas (Desikan et al., 2006). Quality control was rigorously performed by 

visually inspecting raw structural images, skull-stripped volumes, and reconstructed pial surfaces 

within FreeSurfer’s visual tools (e.g., Freeview). Criteria for quality control included accurate 

skull stripping without visible dura, consistent cortical ribbon delineation, and correct anatomical 

segmentation. Manual interventions such as control point edits, brain mask adjustments, and pial 

https://surfer.nmr.mgh.harvard.edu/
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surface regeneration commands (recon-all -autorecon-pial -subjid subjectID) were used to 

correct identified segmentation and normalization errors 

2.2.2.2.3 Statistical Analysis 

Statistical analysis was performed using IBM SPSS Statistics (version 29.0; IBM Corp., 

Armonk, NY, USA). A multivariate analysis of covariance (MANCOVA) was conducted to 

assess group differences in cortical thickness across the 70 regions, with group (gamer vs. non-

gamer) as the independent variable and total intracranial volume (ICV) entered as a covariate. 

Main effects and interactions were evaluated with statistical significance set at p ≤ 0.05. Effect 

sizes were reported using F-statistics and partial eta squared (ηp²). 

A parallel MANCOVA was conducted to evaluate regional cortical volume differences 

using the same model. However, no statistically significant group-wide volumetric differences 

were observed. The inclusion of ICV as a covariate ensured that variations in head size were 

accounted for in both analyses. 

2.2.2.3 White Matter Tractography  

2.2.2.3.1 DSI-Studio Preprocessing 

DSI Studio version 2022.08.0 is a non-commercial software program that was utilized in 

this study for diffusion MR image analysis and provided functions including deterministic fiber 

tracking and 3D visualization (Yeh et al., 2013). We used a multi-shell diffusion scheme with b-

values of 300, 650, 1000, and 2000 s/mm². The acquisition parameters consisted of an in-plane 

resolution of 2 mm and a slice thickness of 2 mm. The accuracy of b-table orientation was 

examined by comparing fiber orientations with those of a population-averaged template (Yeh 
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FC, 2018 ). Diffusion-weighted images were preprocessed using the EDDY tool implemented 

via DSI Studio, which corrected for eddy current–induced distortions and motion artifacts. The 

diffusion data were reconstructed in the MNI space using q-space diffeomorphic reconstruction 

(Yeh et al., 2010) to obtain the spin distribution function (Yeh & Tseng, 2011). A diffusion 

sampling length ratio of 1.25 was used. The resulting diffeomorphic reconstruction output had an 

isotopic resolution of 2 mm.  

2.2.2.3.2  Tractography Protocols & Structural Connectivity Analysis   

Seeds were randomly placed throughout the ROIs until reaching a cutoff of 50,000,000 

seeds. Additionally, two pairwise spherical ROIs were also defined as ending regions.  In the case 

between the L SOG and the L IPL, for example, the ending regions were placed at (52,74,37) and 

(51,64,51). An angular threshold of 60 degrees was set as the maximum allowed angular deviation 

between steps. The step size was randomly selected from 0.5 voxels to 1.5 voxels. Tracks with 

lengths shorter than 10 mm or longer than 100 mm were excluded from further analysis. The 

process continued until mapping each subsystem of the dorsal and ventral visual streams (DVS, 

VVS, VS), with an exhaustive exploration of all pairwise links in each section denoted in Table 

2.2.  For full reproducibility, the parameter ID used in DSI Studio to configure the settings 

described above is provided: 0AD7233C9A99193Fba3Fdb2041bC84280F0FA02ec. This ID 

allows others to load the exact parameters used in our analysis, ensuring that tractography and 

derived metrics can be replicated using identical configurations. Adjustments to the parameters for 

maximum length and angular threshold were made based on the connection being mapped, as 

detailed in Table 2.2.  
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Table 2.2 Minimum and maximum streamline angular thresholds for visual stream connections 

 

For tracking eligibility, a quantitative anisotropy threshold of 0.01 was universally applied 

in all connections, except for the connection between R SOG and R IPL. In this case, a lower 

quantitative anisotropy threshold of 0.005 was necessary to prevent the inadvertent exclusion of 

subjects with valid fibers from the analysis. Consequently, voxels with a qualitative anisotropy 

value exceeding the specified threshold were deemed anisotropic and suitable for inclusion in the 

fiber tracking process. The fiber pathways between the L SOG and L IPL are shown in a 

representative participant in Figure 2.2, where the axis is color-coded to distinguish the orientation 

of the fibers. The X-axis is coded for red from right to left, the Y-axis is coded for green from 

anterior to posterior, and the Z-axis is coded for blue from superior to inferior.  

Structural connectivity measures the anatomical organization of the brain using white 

matter fiber tracts (Babaeeghazvini et al., 2021). Although relatively stable on shorter time scales 

(seconds to minutes), it can exhibit plastic experience-dependent changes at longer periods (hours 

to days) (Sporns, 2013). Fractional Anisotropy (FA), based on diffusivity, is calculated as the 

Subsystem Connection 
Min length 

(mm) 

Max length 

(mm) 

Angular 

Threshold (deg) 

 

 

DVS 

L SOG L IPL 10 100 60 

L SOG L SPL 10 300 70 

R SOG R IPL 10 100 75 

R SOG R SPL 10 150 70 

 

 

VVS 

L IOG L ITG 10 20 50 

L IOG L FG 10 35 50 

R IOG R ITG 10 20 50 

R IOG R FG 10 35 50 

 

 

VS 

L Calc L IOG 10 70 65 

L Calc L SOG 5 20 50 

R Calc R IOG 10 80 65 

R Calc R SOG 10 30 50 
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normalized fraction of the diffusion tensor’s magnitude (Soares et al., 2013). Fractional anisotropy 

(FA) is a useful measure and is often a standard in structural connectivity analysis (Sammer et al., 

2022; Soares et al., 2013). Quantitative anisotropy (QA) is known to be less susceptible to partial 

volume effects due to crossing fibers and free water in the brain than FA, resulting in a better 

resolution and improved tractography(Ahn & Lee, 2011; Yeh et al., 2010).   

QA is a model-free measure derived from the Fourier transform relation between MR 

signals and diffusion displacement and is nonparametrically calculated from peak orientations on 

a spin distribution function (Yeh et al., 2013). QA is known to be less susceptible to partial volume 

effects due to crossing fibers and free water in the brain than FA, resulting in a better resolution 

and improved tractography (Ahn & Lee, 2011; Yeh et al., 2010). Both FA and QA were utilized as 

primary measures of enhanced structural connectivity and were extracted for each pair of ROIs 

composing the two visual streams, and we investigated the brain-behavior relation of these two 

structural connectivity measures with the participants’ response times.          
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2.2.2.4 Undirected and Directed Functional Connectivity  

Functional connectivity (FC), i.e., pairwise Pearson correlation coefficients in 

neuroimaging, measures temporal correlations of the Blood Oxygen Level Dependent  BOLD 

signal time series in spatially distant brain regions.(Bastos & Schoffelen, 2016; Friston, 1994; 

Rosch & Mostofsky, 2019) Thus, two regions are considered functionally connected if there is a 

statistical relationship between the measures of recorded BOLD activity (Eickhoff & Müller, 

2015).  FC was computed using 6 mm spherical ROIs. For the directed connectivity analysis, the 

appropriate model order for time-domain Granger causality (TGC) was determined by 

minimizing the spectral difference between the Granger-generated time series and the original 

Figure 2.2  Tractography Fiber Tracks, Visual Streams. The fibers are colored-coded using 

the RGB model to represent their orientation, where “red” indicates fibers along the X-axis 

(i.e., left-right), “green” indicates fibers along the Y-axis (i.e., anterior-posterior), and 

“blue” indicates fibers along the Z-axis (i.e., inferior-superior).  

 

Mixed colors, such as  “yellow,” represent fibers with combined orientations (e.g., red and 

green). (Left to Right): Sagittal, reconstruction of white matter fiber tracts modelling 

pathways between L SOG and L IPL; Coronal, reconstruction of white matter tracts 

modelling the pathways that constitute the entire dorsal and ventral streams; Coronal, 

reconstruction of white matter tracts modelling the pathways between the L SOG and L IPL.  
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signal. After evaluating model orders ranging from two to twenty, a model order of six was 

selected, as it yielded the lowest spectral discrepancy for the visual stream analysis. TGC 

matrices were then computed for each participant using the same ROIs and the model order, 

using the bivariate autoregressive model outlined by Dhamala et al. (2008, 2018). 

To investigate the relationship between brain connectivity and behavior, undirected FC and 

TGC values were obtained for each participant per connection. Spearman's rank correlation 

coefficient was used to assess the correlation between FC and response time (RT) as well as 

between TGC and RT. 

2.2.2.5 Statistical Analysis 

Statistical comparison of connectivity measures between ROIs across gamers and non-

gamers was carried out using the Wilcoxon rank-sum test (also known as the Mann-Whitney U 

test). This non-parametric test was chosen because it does not assume normality of the connectivity 

measure’s distribution, making it suitable for comparing the two groups without requiring any 

assumptions about the underlying distribution of the data. For multiple comparison corrections in 

this analysis, we employed the Holm-Bonferroni method. This method was selected for its ability 

to enhance statistical power and sensitivity to individual significant comparisons while effectively 

controlling for Type I errors (Giacalone et al., 2018; Holm, 1979). We applied a p < 0.05 

significance threshold, within each main section (DVS, VVS, VS), to ensure statistical significance 

while simultaneously controlling for the family-wise error rate in the dorsal and ventral streams, 

Holm-Bonferroni corrected indicated by p*, providing a robust framework for identifying 

meaningful differences in connectivity measures.  
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2.2.3  Whole Brain Analysis: Tractography Constrained Functional and Directed 

Connectivity 

2.2.3.1 Whole Brain Tractography Protocols 

 

Following data acquisition, the diffusion data were reconstructed in the MNI space using 

q-space diffeomorphic reconstruction (QSDR)(Yeh & Tseng, 2011) to compute the spin 

distribution function (Yeh et al., 2010)  in DSI Studio (Version Hou, 2024). A diffusion 

sampling length ratio of 1.25 was applied, with the output resolution in diffeomorphic 

reconstruction set to 2 mm isotropic. Diffusion-weighted images were preprocessed using the 

EDDY tool implemented via DSI Studio, which corrected for eddy current–induced distortions 

and motion artifacts.  

For fiber tractography, a deterministic fiber tracking algorithm (Yeh et al., 2013) was 

used, incorporating augmented tracking strategies (Yeh, 2020) to improve reproducibility. The 

quantitative anisotropy (QA) threshold was set to 0.12, and the angular threshold was set to 60 

degrees. The step size was 1.00 mm, and tracks shorter than 10 mm or longer than 400 mm were 

discarded. A total of 5 million tracts were calculated for each participant. Shape analysis was 

conducted to derive shape metrics for the tractography(Yeh, 2020).  

For full reproducibility, the parameter ID used in DSI Studio to configure these settings is 

8FC2F53D9A99193Fba3Fb803Fcb2041bC843404B4Cca01cbaCDCC4C3Ec. This ID allows 

others to load the exact settings and parameters used in the analysis, ensuring that the 

tractography and other measures can be reproduced using the same configurations.  
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2.2.3.2  fMRI Pre-Processing Pipeline 

The preprocessing pipeline for functional MRI data that was acquired as described in 

Section 2.1.2. combined with tools from AFNI (Cox, 1996; Cox & Hyde, 1997) and 

FSL(Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009) to ensure high-quality data 

for subsequent analysis (Adhikari et al., 2018; B. M. Adhikari et al., 2018; Adhikari et al., 2019) 

The process began with denoising the fMRI data to reduce noise from physiological artifacts 

such as head motion and scanner drift, using AFNI’s dwidenoise command. This step resulted in 

denoised datasets for each run of the fMRI data. Following this, motion correction was 

performed using AFNI's 3dvolreg, which registers each volume of the fMRI data to a reference 

volume within the session. After motion correction, the data were aligned to the MNI space 

using FSL’s FLIRT tool, ensuring that all data were in a common standard space for group-level 

comparisons. 

To remove any motion-related artifacts, outlier detection was carried out using AFNI’s 

3dToutcount, which computes the fraction of outlier voxels in each volume. A censoring 

procedure was then applied, excluding volumes where the fraction of outlier voxels exceeded a 

predefined threshold of 0.1. Despiking was performed with AFNI’s 3dDespike, which removed 

brief, spurious signal fluctuations, or "spikes," from the data. Following despiking, slice timing 

correction was applied using 3dTshift to ensure temporal alignment across slices in each volume. 

Time series were then extracted from predefined brain regions derived from the 

Automated Anatomical Labeling 3 (AAL3) parcellation using AFNI's 3dROIstats, which 

computes the average signal within each ROI. These time series were saved as text files for 

further analysis. The signal-to-noise ratio for each run was computed using AFNI’s 3dTstat to 
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calculate the mean signal and 3dTproject to compute the standard deviation of the noise. 

Additionally, global correlation averages were computed to assess overall data quality. 

The degree of spatial blurring in the data was estimated using FSL's 3dFWHMx, which 

calculates the full width at half maximum (FWHM) of the data’s spatial blurring. Following this, 

a mask was created using AFNI’s 3dmask_tool to identify valid brain regions with usable data 

across all volumes. The data were then registered to the MNI template (ENIGMA Template) 

using AFNI’s  @auto_tlrc, which applies a transformation matrix to warp each subject’s data 

into standard space for group-level analysis. 

To further improve data quality, Principal Component Analysis (PCA) was applied using 

AFNI’s 3dpc to remove non-neuronal signals, such as global signal fluctuations and motion-

related noise. PCA regressors were generated from ventricular and brain regions and were used 

in subsequent regression analysis to remove unwanted variance from the data. Finally, the 

processed datasets were reviewed for quality control, and any remaining temporary files were 

removed to prepare the data for further analysis.  

After the AFNI and FSL preprocessing steps, additional processing was performed in 

MATLAB to further refine the data for task-based analysis. This included outlier correction, 

where extreme values in the time series that exceeded 5 standard deviations were identified and 

corrected. Detrending was applied to remove any linear trends from the data using MATLAB’s 

detrend function, ensuring that any slow drifts in the signal did not affect subsequent analyses.  

The time series data were then parsed by behavioral condition and time block, creating 

condition-specific time series data for each subject. This allowed for a detailed analysis of brain 

activity that aligned with experimental conditions. The preprocessed time series data for each 

ROI in the AAL3 atlas were stored in structured files and saved for subsequent analysis.  
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2.2.3.3 Atlas Selection & AAL3 Parcellation 

For the functional and structural connectivity analysis, the Automated Anatomical 

Labeling 3 (AAL3) atlas was selected due to its widespread use and strong effect sizes in 

capturing brain structure-function relationships, especially when compared to other well-known 

atlases (Revell et al., 2022). The AAL3 atlas includes 166 parcellations, with critical task-

relevant regions such as the orbitofrontal cortex, cerebellum, and thalamic nuclei, which are 

particularly relevant for video game studies investigating neural processes underlying cognitive 

functions like visuomotor decision-making.  

 

Thus, the AAL3 atlas was deemed highly suitable for whole-brain analysis in this study 

(Rolls et al., 2020). For better visual clarity and interpretability, we organized the regions of the 

AAL3 atlas intoclear subdivisions Orbitofrontal, Occipital, Limbic System, Frontal, Temporal, 

Thalamus, Parietal, Basal Ganglia, Cerebellum, and Brain Stem shown in Figure 2.3a based on 

their known anatomical locations, while preserving individual regions in our analysis as 

displayed in Table 2.3 As the brain slices progress in Figure 2.3b, the organization of these 

regions becomes more apparent, revealing how these anatomical structures are spatially 

arranged. This clear organizational structure aids in interpreting the results of our analysis. 
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Figure 2.3 AAL3 Atlas Parcellation Categories for Connectivity Analysis. 

Visualization of the AAL3 atlas with anatomically grouped parcellations 

used in the connectivity analysis. (a) superior view, (b) right lateral view, (c) 

inferior view. (d) Axial slices illustrate the parcellation structure along the Z-

axis. Colors correspond to distinct anatomical groups. The brainstem (gray) 

is not shown but is included in the analysis. 
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Table 2.3 AAL 3 Region Parcellation Categories by Anatomical Categories 
 

No. AAL 3 Region Category No. AAL 3 Region Category 

1 Precentral_L Frontal 84 Temporal_Pole_Sup_R Temporal 

2 Precentral_R Frontal 85 Temporal_Mid_L Temporal 

3 Frontal_Sup_2_L Frontal 86 Temporal_Mid_R Temporal 

4 Frontal_Sup_2_R Frontal 87 Temporal_Pole_Mid_L Temporal 

5 Frontal_Mid_2_L Frontal 88 Temporal_Pole_Mid_R Temporal 

6 Frontal_Mid_2_R Frontal 89 Temporal_Inf_L Temporal 

7 Frontal_Inf_Oper_L Frontal 90 Temporal_Inf_R Temporal 

8 Frontal_Inf_Oper_R Frontal 91 Cerebellum_Crus1_L Cerebellum 

9 Frontal_Inf_Tri_L Frontal 92 Cerebellum_Crus1_R Cerebellum 

10 Frontal_Inf_Tri_R Frontal 93 Cerebellum_Crus2_L Cerebellum 

11 Frontal_Inf_Orb_2_L Frontal 94 Cerebellum_Crus2_R Cerebellum 

12 Frontal_Inf_Orb_2_R Frontal 95 Cerebellum_3_L Cerebellum 



                                                                                                                                                         

43 

13 Rolandic_Oper_L Frontal 96 Cerebellum_3_R Cerebellum 

14 Rolandic_Oper_R Frontal 97 Cerebellum_4_5_L Cerebellum 

15 Supp_Motor_Area_L Frontal 98 Cerebellum_4_5_R Cerebellum 

16 Supp_Motor_Area_R Frontal 99 Cerebellum_6_L Cerebellum 

17 Olfactory_L Frontal 100 Cerebellum_6_R Cerebellum 

18 Olfactory_R Frontal 101 Cerebellum_7b_L Cerebellum 

19 Frontal_Sup_Medial_L Frontal 102 Cerebellum_7b_R Cerebellum 

20 
Frontal_Sup_Medial_

R 
Frontal 103 Cerebellum_8_L Cerebellum 

21 Frontal_Med_Orb_L Frontal 104 Cerebellum_8_R Cerebellum 

22 Frontal_Med_Orb_R Frontal 105 Cerebellum_9_L Cerebellum 

23 Rectus_L Frontal 106 Cerebellum_9_R Cerebellum 

24 Rectus_R Frontal 107 Cerebellum_10_L Cerebellum 

25 OFCmed_L Orbitofrontal 108 Cerebellum_10_R Cerebellum 

26 OFCmed_R Orbitofrontal 109 Vermis_1_2 Cerebellum 
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27 OFCant_L Orbitofrontal 110 Vermis_3 Cerebellum 

28 OFCant_R Orbitofrontal 111 Vermis_4_5 Cerebellum 

29 OFCpost_L Orbitofrontal 112 Vermis_6 Cerebellum 

30 OFCpost_R Orbitofrontal 113 Vermis_7 Cerebellum 

31 OFClat_L Orbitofrontal 114 Vermis_8 Cerebellum 

32 OFClat_R Orbitofrontal 115 Vermis_9 Cerebellum 

33 Insula_L Limbic 116 Vermis_10 Cerebellum 

34 Insula_R Limbic 117 Thal_AV_L Thalamus 

35 Cingulate_Mid_L Limbic 118 Thal_AV_R Thalamus 

36 Cingulate_Mid_R Limbic 119 Thal_LP_L Thalamus 

37 Cingulate_Post_L Limbic 120 Thal_LP_R Thalamus 

38 Cingulate_Post_R Limbic 121 Thal_VA_L Thalamus 

39 Hippocampus_L Limbic 122 Thal_VA_R Thalamus 

40 Hippocampus_R Limbic 123 Thal_VL_L Thalamus 

41 ParaHippocampal_L Limbic 124 Thal_VL_R Thalamus 

42 ParaHippocampal_R Limbic 125 Thal_VPL_L Thalamus 

43 Amygdala_L Limbic 126 Thal_VPL_R Thalamus 

44 Amygdala_R Limbic 127 Thal_IL_L Thalamus 
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45 Calcarine_L Occipital 128 Thal_IL_R Thalamus 

46 Calcarine_R Occipital 129 Thal_Re_L Thalamus 

47 Cuneus_L Occipital 130 Thal_Re_R Thalamus 

48 Cuneus_R Occipital 131 Thal_MDm_L Thalamus 

49 Lingual_L Occipital 132 Thal_MDm_R Thalamus 

50 Lingual_R Occipital 133 Thal_MDl_L Thalamus 

51 Occipital_Sup_L Occipital 134 Thal_MDl_R Thalamus 

52 Occipital_Sup_R Occipital 135 Thal_LGN_L Thalamus 

53 Occipital_Mid_L Occipital 136 Thal_LGN_R Thalamus 

54 Occipital_Mid_R Occipital 137 Thal_MGN_L Thalamus 

55 Occipital_Inf_L Occipital 138 Thal_MGN_R Thalamus 

56 Occipital_Inf_R Occipital 139 Thal_PuI_L Thalamus 

57 Fusiform_L Occipital 140 Thal_PuI_R Thalamus 

58 Fusiform_R Occipital 141 Thal_PuM_L Thalamus 

59 Postcentral_L Parietal 142 Thal_PuM_R Thalamus 

60 Postcentral_R Parietal 143 Thal_PuA_L Thalamus 

61 Parietal_Sup_L Parietal 144 Thal_PuA_R Thalamus 

62 Parietal_Sup_R Parietal 145 Thal_PuL_L Thalamus 

63 Parietal_Inf_L Parietal 146 Thal_PuL_R Thalamus 



                                                                                                                                                         

46 

64 Parietal_Inf_R Parietal 147 ACC_sub_L Limbic 

65 SupraMarginal_L Parietal 148 ACC_sub_R Limbic 

66 SupraMarginal_R Parietal 149 ACC_pre_L Limbic 

67 Angular_L Parietal 150 ACC_pre_R Limbic 

68 Angular_R Parietal 151 ACC_sup_L Limbic 

69 Precuneus_L Parietal 152 ACC_sup_R Limbic 

70 Precuneus_R Parietal 153 N_Acc_L Limbic 

71 Paracentral_Lobule_L Parietal 154 N_Acc_R Limbic 

72 Paracentral_Lobule_R Parietal 155 VTA_L Limbic 

73 Caudate_L 
Basal 

Ganglia 
156 VTA_R Limbic 

74 Caudate_R 
Basal 

Ganglia 
157 SN_pc_L Limbic 

75 Putamen_L 
Basal 

Ganglia 
158 SN_pc_R Limbic 

76 Putamen_R 
Basal 

Ganglia 
159 SN_pr_L Limbic 

77 Pallidum_L 
Basal 

Ganglia 
160 SN_pr_R Limbic 

78 Pallidum_R 
Basal 

Ganglia 
161 Red_N_L Brainstem 

79 Heschl_L Temporal 162 Red_N_R Brainstem 

80 Heschl_R Temporal 163 LC_L Brainstem 

81 Temporal_Sup_L Temporal 164 LC_R Brainstem 
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82 Temporal_Sup_R Temporal 165 Raphe_D Brainstem 

83 Temporal_Pole_Sup_L Temporal 166 Raphe_M Brainstem 

 

2.2.3.4  Connectivity and Graph Theoretic Analysis 

2.2.3.4.1  Computation of SC-FC Connectivity 

Structurally constrained-functional connectivity (SC-FC) was computed by combining 

structural and functional connectivity matrices. Functional connectivity (FC) was calculated 

using Pearson’s correlation coefficient between the time series of brain regions defined by the 

AAL3 atlas. Participant-level FC matrices were generated using time series data extracted from 

each parcellated region. 

For the structural connectivity (SC) analysis, diffusion-weighted imaging (DWI) data 

were processed to derive a structural connectivity matrix based on deterministic tractography as 

described in Section 2.2.3. To constrain the FC data by SC, a QA threshold of 0.12 was applied 

to the structural connectivity matrix (using the same threshold as the original tractography 

analysis). This threshold was used to binarize the QA connectivity matrix, effectively excluding 

weak or insignificant connections. Once this binarized mask was created for each subject, it was 

applied to the functional connectivity matrix. This approach ensured that only the functional 

connections between regions with significant structural connectivity were retained for further 

analysis. 

Once the SC-FC data was obtained for each subject, Fisher's Z transformation was applied 

to the Pearson’s correlation coefficients to ensure valid and unbiased statistical comparisons, as 

Pearson's correlation is non-linear and not normally distributed. Mean differences between groups 
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were then computed on the Z-transformed data. The Mann-Whitney U rank sum test (p < 0.05) 

was used to determine significance, as it is a non-parametric method that allows for confident 

identification of significant differences, regardless of the underlying data distribution, minimizing 

the risk of false positives while maintaining sensitivity to true effects (McKnight & Najab, (2010)). 

To ensure the test assumptions were met, we verified that the degree of skewness in our data was 

comparable between groups. After significance testing, our data was transformed back into 

correlation coefficients for interpretability.  

 

2.2.3.4.2   SC-FC Graph-Theoretic Analysis 

For the undirected graph-theoretic network analysis, we applied a 95% threshold to 

binarize the SC-FC data, retaining the top 95% of the strongest connections. This approach was 

chosen to capture as much of the structural network as possible while ensuring that only valid, 

non-spurious connections were included. 

Binarizing the network simplifies the analysis by focusing on the presence or absence of 

connections rather than their strength. Many recent studies discard link weights, as binary 

networks are, in most cases, simpler to characterize and have a more easily defined null model 

for statistical comparison (Rubinov & Sporns, 2010), making them more reliable for exploratory 

data analysis. This approach was particularly suited for examining whole-brain networks, 

allowing us to explore brain-wide network dynamics across many regions. 

We considered both global and local graph-theoretic measures in our analysis, which 

were calculated using the Brain Connectivity Toolbox (BCT) (Rubinov & Sporns, 2010). Node 

degree and local efficiency were calculated for each AAL3 region in both gamers and non-

gamers. Local efficiency reflects regional integration, measuring how effectively information is 

exchanged among a node’s immediate neighbors if the node itself is removed. Node degree, a 
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local measure of centrality, reflects how many direct connections a region has to others in the 

network, indicating its level of participation in the SC-FC architecture. Local efficiency 

quantifies how effectively information is exchanged among a region’s immediate neighbors if 

the region itself were removed, providing a measure of local network integration. These metrics 

were used to assess the regional properties of network nodes and to identify connectivity patterns 

associated with group differences. 

2.2.3.4.3  Computation of SC-dFC Connectivity 

Structurally constrained-directed functional connectivity (SC-dFC) was computed by 

combining structural and directed functional connectivity for each participant using the same 

ROIs of the AAL3 atlas. The dFC was calculated using time-domain Granger Causality (TGC) 

using the bivariate autoregressive model outlined by Dhamala et al. (2008, 2018). The evaluation 

of TGC was conducted in the frequency band in the range between  𝑓1= 0.05 Hz to 𝑓2 = 0.9 Hz, 

with a sampling rate of 1.87 Hz ( 𝑇𝑅−1). 

The appropriate model order for the TGC analysis was determined by minimizing the 

spectral difference between the Granger-generated time series and the original signal, while 

maintaining sensitivity to trial-specific dynamics governed by the trial duration and the repetition 

time (TR). To preserve this sensitivity, the model order was constrained such that it did not 

exceed the number of time points within a trial. The maximum allowable model order, denoted 

momax⁡,⁡is given by 

momax =
Ttrial

TR
 , ⁡⁡⁡where⁡⁡Ttrial is the inter-trial interval. 

Under this constraint, a model order of 5 was selected, as it best minimized the spectral 

discrepancy in the whole-brain analysis while preserving sensitivity to task-related GC 
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fluctuations. TGC matrices were computed between the AAL3 region time series using this 

model order, which served as the directed functional connectivity (dFC). 

For structural connectivity (SC) analysis, diffusion-weighted imaging data were 

processed to derive a structural connectivity matrix using deterministic tractography. This 

involved q-space diffeomorphic reconstruction (QSDR) and a deterministic fiber tracking 

algorithm to estimate the number and strength of structural connections between each pair of 

brain regions. 

To constrain the dFC data, a quantitative anisotropy (QA) threshold of 0.12 was applied 

to the SC matrix, consistent with the threshold used in the original tractography analysis. This 

threshold was used to binarize the QA-based connectivity matrix, excluding weak or 

insignificant connections. The resulting binary mask was then applied to each participant’s dFC 

matrix, allowing only directed functional connections between structurally connected regions to 

be retained for further analysis. 

Importantly, applying the SC mask to the dFC data yields a measure of effective 

connectivity, which captures the directional and causal influence one brain region exerts on 

another, constrained by the underlying anatomical substrate (Bajaj et al., 2016). Group 

differences were assessed using the Mann–Whitney U rank-sum test (p < 0.05). 

2.2.3.4.4 SC-dFC Graph-Theoretic Analysis 

FC is inherently symmetric, meaning that a valid connection between two nodes (A, B) 

implies that the same connection, with the same magnitude, exists for (B, A). In contrast, dFC is 

inherently asymmetric, meaning that a connection from source A to target B does not imply the 

same or a similar connection from B to A. This asymmetry results in dFC networks exhibiting 

greater variability and a sparser structure compared to FC networks. 
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To address this sparsity, we applied a 10% threshold to dFC, retaining only the top 10% 

of the strongest and most reliable directed interactions. This threshold minimized the influence of 

invalid or spurious connections, while preserving as many effective connections as possible. By 

doing so, we ensured that the global density of the SC-dFC network remained comparable to that 

of the SC-FC network within the same subject. This thresholding strategy aligned with our goal 

of maintaining as many meaningful connections as possible to accurately characterize the SC-

dFC network while excluding invalid and spurious connections. 

We considered both global and local graph-theoretic measures in our analysis, which 

were also calculated using BCT (Rubinov & Sporns, 2010). Node degree and local efficiency 

were calculated for each AAL3 region in both gamers and non-gamers.  

2.2.3.4.5  Assessing  Behavioral Relevance 

To assess the behavioral relevance of brain connectivity measures and functional network 

properties, we used Spearman correlation to examine the association between each brain 

connectivity measure (SC-FC or SC-dFC) and response time (RT) in the behavioral task. The 

correlations were calculated for both group-level comparisons and within-group analyses. 

For group comparisons, we tested for significant differences using the Mann-Whitney U 

rank-sum test with significance defined as p < 0.05 and |r| ≥ 0.2. If a significant difference was 

observed, we plotted the corresponding brain-behavior correlation graph for the entire group, as 

well as separate graphs for each group (gamers and non-gamers) to explore within-group 

relationships. A positive correlation is associated with a brain measure that tracks slower 

response times, while a negative correlation is associated with faster response times.  
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This approach allowed us to identify brain regions and connectivity patterns that were 

significantly associated with response time differences across groups, as well as the extent to 

which these relationships persisted within each group. 

2.2.4 Whole-Brain Analysis: rcPCA-Based ROI Selection 

This section describes the analytical procedures used for data-driven, whole-brain 

connectivity analysis, applying a novel PCA-based ROI filtering framework across structural, 

functional, and directed connectivity modalities. Unless otherwise noted, data collection 

protocols, preprocessing steps, and atlas selection were consistent with those described in earlier 

sections of this dissertation. 

2.2.4.1   MRI Data Acquisition 

MRI acquisition parameters were identical to those detailed in Section 2.1.2, including all 

structural (T1 and DWI) and functional (task-based fMRI) imaging sequences. This consistency 

ensures comparability across modalities and chapters. 

2.2.4.2   Data Collection, Scanning, and Tractography Protocols 

Tractography and preprocessing procedures were consistent with those used in Chapter 4 

and are detailed in Section 2.2.3.1. No changes were made to diffusion processing, streamline 

filtering, or tract length thresholds for the whole-brain PCA pipeline. 

2.2.4.3   fMRI Preprocessing Pipeline 

Functional preprocessing followed the same pipeline outlined in Section 2.2.3.2, 

including motion correction, spatial normalization, and nuisance regression. Retaining this 

pipeline across constrained and unconstrained analyses ensured methodological consistency. 
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2.2.4.4   Atlas Selection and AAL3 Parcellation 

As in Chapter 4, all analyses in this chapter used the AAL3 atlas for parcellation. The 

rationale for this selection is discussed in Section 2.2.3.3. Maintaining the same atlas across all 

whole-brain analyses allowed for clear cross-modal interpretation of PCA-filtered results. 

2.2.4.5 Functional Connectivity and Structure-Function Coupling 

After preprocessing, functional connectivity (FC) was computed using pairwise Pearson 

correlations across the full set of parcellated time series obtained from the AAL3 atlas. Directed 

functional connectivity (dFC) was estimated using pairwise time-domain Granger causality, 

following the procedure described in Section 2.2.3.5.1. 

To assess the degree of alignment between anatomical structure and functional signaling, 

structure–function coupling (SFC) metrics were computed by correlating SC matrices with both 

FC and dFC (Fotiadis et al., 2024). All matrices were aligned using the AAL3 parcellation to 

ensure consistency across modalities. For SFC, the coupling was computed by extracting, for 

each ROI pair, the corresponding values from the SC and FC matrices, then calculating the 

Pearson correlation across participants. This yielded region-wise SFC values reflecting the 

strength of association between anatomical connectivity and functional co-activation. 

A similar procedure was used to compute structure–directed functional coupling (SdFC), 

where each participant’s SC matrix was compared to their sender-mode Granger causality (dFC) 

matrix. Since SC is symmetric and undirected, the analysis held the row index constant to assess, 

for each region, the correlation between its structural substrate and its outbound directed 

functional influences. This yielded region-wise SdFC values that quantify how well a region’s 

anatomical connections support its role as a functional sender. 
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Although both intra-regional and pairwise SdFC coupling values were initially computed, 

the analysis was ultimately restricted to intra-regional sender-mode values—denoted 

SdFC(sender). This constraint enabled a focused examination of region-specific structure–

function alignment and established a foundation for future work extending beyond sender-mode 

dynamics. 

2.2.4.6 rcPCA-Based ROI Selection 

To identify the most informative ROIs across structural and functional connectivity 

domains, a novel data-driven principal component analysis (PCA) framework was developed for 

dimensionality reduction. This region-based cumulative PCA (rcPCA) method decomposes 

subject-level connectivity matrices into orthogonal principal components and derives regional 

contribution scores by quantifying each ROI’s influence on the structured variance of the dataset. 

All analyses were implemented in MATLAB using custom scripts developed for this study. 

This approach adapts standard PCA protocols and interpretation strategies widely used in 

neuroimaging, emphasizing high-loading features within each component to enable principled 

ROI selection and structured dimensionality reduction without sacrificing interpretability. To 

prioritize meaningful contributors and minimize noise, we capped contribution accumulation at 

the top 20 ROIs per component. This cap avoids rank dilution from low-weight contributors, 

enhances interpretability, and emphasizes regions that consistently explain variance across 

components. 

For undirected connectivity data such as FC, diagonal elements from each participant’s 

166 × 166 ROI-wise matrix and reshaped the resulting 3D array into a two-dimensional matrix of 
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size n × E, where n is the number of subjects and E is the number of unique off-diagonal 

connections between ROIs. This matrix reshaping was handled by the script 

undirected_pca_analysis.m. This script then calls a custom function run_pca.m that uses 

MATLAB’s built-in pca() function, which performs singular value decomposition (Wall, 2002) 

on a mean-centered data matrix of size n × E. This function returns the component loadings, subject 

scores, and variance explained by each principal component. ROI-level contributions were used 

to interpret latent components, while subject-level scores served as PCA-derived features for 

potential classifier enrichment.  

Finally, the ROI contributions were identified for each component by summing the 

absolute values of the PCA loadings associated with each region. For connectivity-wise 

decompositions (e.g., FC), loadings were reshaped into full ROI × ROI matrices with NaNs along 

the diagonal to exclude self-connections. The sum of absolute values across each row yielded a 

scalar contribution score per region, reflecting how strongly a given ROI influenced the variance 

captured by that component. For ROI-wise decompositions (e.g., structure–function coupling), 

each coefficient directly corresponded to a region, and the absolute values were taken as 

contribution scores. ROIs were ranked in descending order for each component and saved for 

downstream analysis. 

The script undirected_pca_roi_contributions.m was used to compute each region’s 

cumulative contribution to the explained variance. This script sets the number of top pca rois, the 

cumulative explained variance percentage, and calls the custom function pca_roi_contributions.m, 

which calculates the cumulative contribution of each roi to the user's desired explained variance 

threshold, which we set to 80% using a weighted sum set by the weights of each PC. 
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By capturing 80% of the total variance across components, we retain the dominant patterns 

in the data that are most likely to reflect a structured signal rather than noise, while discarding 

components that account for only a small portion of the variance, which may be less interpretable 

and more sensitive to measurement error. This threshold also stabilizes the ranking of contributing 

ROIs across modalities and ensures that our contribution scores are derived from a meaningful, 

high-variance subspace rather than dominated by noisy low-variance dimensions.   

This procedure was carried out not only for FC, but also for all 13 categorically distinct SC 

measures, organized in Table 2.3, as well as for all 13 SFC and 13 SdFC (sender) coupling 

matrices, using the same run_pca.m script and ROI contribution framework. Additional technical 

descriptions of these diffusion MRI measures are available in the DSI Studio documentation 

provided by Dr. Fang-Cheng Yeh (Yeh, n.d.-a; Yeh, n.d.-b). Each analysis followed the same 

pipeline: data reshaping, PCA decomposition, ROI-wise contribution scoring, and cumulative 

variance weighting, providing a unified approach to data-driven region selection across modalities. 
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Table 2.3 Structural connectivity (SC) measures and definitions reflecting standard interpretations 

of diffusion and tractography measures from DSI Studio  

 

For directed connectivity data, such as Granger-causal (dFC) matrices, a parallel pipeline 

was developed using the scripts directed_pca_analysis.m and run_dpca.m. Since directed 

matrices represent asymmetric interactions between regions from sender to receiver, we 

performed rcPCA separately for the sender, receiver, and total connectivity modes. Directed 

connectivity matrices are square (N × N), where each element represents the strength of 

influence from a sender region to a receiver region. A companion script to 

SC Measure Description 

Axial Diffusivity (AD)  Diffusion along the primary fiber axis; reflects axonal integrity. 

 Count Raw number of tractography streamlines between regions. 

Fractional Anisotropy (FA) Degree of directional water diffusion; higher values indicate 

organized fiber structure, broadly linked to myelination. 

 Isotropy (ISO) Uniformity of diffusion in all directions 

Mean Diffusivity (MD)  Average diffusion in all directions; reflects overall water 

mobility. 

Mean Length Average length of streamlines between ROIs 

None-Restricted Diffusion 

Imaging (NRDI) 

 Measures extracellular diffusion; sensitive to edema or 

extracellular space. 

Normalized Count (Ncount)  Streamline count adjusted for ROI size and distance. 

Normalized Count (Inverse-

Length Weighted) (Ncount2) 

Streamline count weighted by inverse length; emphasizes 

shorter, potentially more reliable tracts. 

Normalized Quantitative 

Anisotropy (NQA) 

Tracks the anisotropy of the principal fiber direction, normalized 

to background noise. 

Quantitative Anisotropy) QA  Signal intensity along the principal fiber orientation; related to 

tract integrity. 

Radial Diffusivity (RD) Diffusion perpendicular to the main axis; associated with myelin 

integrity. 

Restricted Diffusion Imaging  

(RDI) 

Estimates intracellular diffusion; linked to axonal density 
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pca_roi_contributions.m, titled directed_roi_contributions_dpca.m, was created to compute 

cumulative contributions in sender, receiver, and total modes. For each region, cumulative sender 

influence was calculated by holding the row index constant and summing across columns, 

whereas cumulative receiver influence was computed by holding the column index constant and 

summing across rows. Total contributions were computed by summing each region’s sender and 

receiver values, followed by normalization. These direction-specific contributions were then 

used to rank ROIs according to their influence in the structured variance of the directed 

connectivity data.  

All outputs, including PCA loadings, explained variance, region rankings, and component-

wise visualizations, were saved for each participant group and connectivity modality. In addition, 

the top ROIs, their corresponding AAL3 region labels, and all cumulative ROI contribution scores 

were saved to support downstream interpretation and reproducibility. After confirming the internal 

validity of our approach by comparing PCA-derived region rankings to raw variance rankings 

within each connectivity measure, these results were used in downstream analyses to identify high-

variance ROIs for group comparisons and behavioral correlation testing. 

Overall, this PCA-based ROI selection framework offered a principled and scalable 

strategy for prioritizing informative brain regions in high-dimensional neuroimaging data. By 

reducing noise and redundancy while preserving structured variability, the method improves 

sensitivity to behaviorally relevant effects and significantly lowers the burden of multiple 

comparisons.  

2.2.4.7 Validation of rcPCA-Derived Region Rankings 

To evaluate the internal consistency and robustness of rcPCA, a multi-pronged validation 

was developed to test the derived regional rankings compared to the raw variance using a 
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combination of rank correlation, permutation testing, and hypergeometric overlap statistics using 

a significance threshold of p < 0.001. This procedure was implemented in the script 

validate_pca_variance.m and carried out separately for each modality, including FC, dFC, SC, 

SFC, and SdFC(sender). 

First, the regions were ranked according to their raw pre-PCA variance. This ranking was 

then compared to PCA-derived rankings using Spearman’s rank correlation across a range of 

top-k values, from 2 up to 166, reflecting the full resolution of the AAL3 parcellation. These 

tests provided converging evidence that the region-based cumulative PCA (rcPCA) method 

reliably identifies regions based on structured variance patterns, supporting the method’s 

selectivity and stability across modalities. The choice of k = 20 offered a practical compromise, 

large enough to capture meaningful connectivity patterns while remaining selective enough to 

highlight informative ROIs. 

In the Spearman analysis, we calculated rank correlation coefficients between the top-k 

PCA-derived ROIs and the top-k raw-variance ROIs at each k. This approach was chosen for its 

robustness to non-normal distributions and its sensitivity to monotonic relationships. The 

correlation coefficient was calculated as 

𝜌 =
𝑐𝑜𝑣( ranks 𝑟𝑎𝑤, ranks𝑃𝐶𝐴 )

𝜎ranks,raw 𝜎ranks,PCA 

, 

where ranks raw  are the ranks of the raw data, 𝑟anks PCA are the ranks of regions based on the 

cumulative PCA-derived variance contributions, 𝑐𝑜𝑣 is the covariance between two ranked 

vectors and 𝜎 is the standard deviation of ranks. The correlation was computed in MATLAB 

using the corr() function with the 'Type', 'Spearman' option, which is given by 

[ρk,, 𝑝𝑘] = corr(𝑟𝑎𝑛𝑘𝑟𝑎𝑤_𝑘, ⁡𝑟𝑎𝑛kPCA_k, ′𝑇𝑦𝑝𝑒′, ′𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛′). 
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To assess whether the number of overlapping ROIs between the top-k PCA-selected and 

raw variance-selected regions could be attributed to chance, we used the cumulative distribution 

function of the hypergeometric distribution. This distribution models the probability of x or more 

successes (i.e., overlapping ROIs) when drawing two sets of size k from a population of N=166 

ROIs without replacement. The probability of observing at least x overlaps under the null 

hypothesis of random selection is given by the standard expression for hypergeometric p-value  

𝑝hyper(𝑥) = 1 − ∑
(𝑘

𝑖
)(𝑁−𝑘

𝑘−𝑖
)

(𝑁
𝑘
)

𝑥−1

𝑖=0

 

where N is the total number of ROIs (166), k  is the number of top-ranked ROIs selected 

in each set, and x is the observed number of overlapping ROIs between the PCA-based and raw 

variance-based rankings.  This computation was implemented in MATLAB using the built-in 

hygecdf function and is given by (p_hyper = 1 - hygecdf(x - 1, N, k, k)). 

Finally, a null distribution of random overlap values was generated by permuting the raw 

variance ROI rankings 10,000 times. For each value of k, the top-k ROIs were selected from 

each permutation, and their overlap with the PCA-selected top-k ROIs, denoted as x, was 

recorded. The empirical p-value was then computed as the proportion of permutations in which 

the number of overlapping ROIs was greater than or equal to x, relative to the total number of 

permutations 

𝑝perm =
# of null overlaps ≥ 𝑥

num_permutations
 

and the equivalent MATLAB statement used for this calculation is given by (perm_pvals(i) = 

mean(rand_overlaps >= overlap_counts(i))). This allowed us to assess whether the observed 

overlap between PCA-selected and raw variance-based regions exceeded what would be 

expected by chance. 
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All results, including overlap counts, p-values (Spearman, hypergeometric, and 

permutation), and rank correlations, were logged and plotted across k-values. Summary figures 

included correlation curves and significance levels as a function of k, bar plots comparing top-k 

PCA- and raw-variance ROI values, and permutation histograms and hypergeometric threshold 

overlays for observed overlap 

Across all modalities, hypergeometric and permutation tests yielded exceptionally low p-

values, often well below the p < 0.001 threshold. At higher values of k, both tests frequently 

reached the limits of machine precision. In such cases, MATLAB returned literal zero values due 

to numerical underflow, requiring the imposition of a floor at p = 1e-15. This indicated that the 

observed overlaps were so unlikely under the null distribution that their probabilities could not be 

accurately represented in double-precision floating-point arithmetic. 

This provides compelling evidence that the overlap between PCA-derived and raw-

variance ROI rankings was highly unlikely to occur by chance. They further validate the 

selectivity, robustness, and internal consistency of the proposed method. 

Notably, using cumulative contributions across all ROIs before selecting the top 20 restored the 

Spearman rank significance that was lost in the dFC receiver, SC, SFC, and SdFC modalities when 

only the top 20 ROIs per component were used during accumulation.  

These validation results confirmed that PCA-selected ROIs consistently overlapped with 

high-variance regions across modalities, supporting the interpretability, reproducibility, and 

robustness of the rcPCA selection method. For final visualizations, we used ‘n’ in place of ‘k’ to 

denote the number of top-ranked ROIs, as it provided a clear and intuitive shorthand in contexts 

where there was no conflicting N variable. 
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Furthermore, full convergence of PCA-derived ROI rankings with raw variance rankings, 

across all validation metrics, was observed within the range of k=100-150. This included Spearman 

correlations approaching unity, permutation-based p-values below machine-level significance      

(p < 1e-15), and hypergeometric overlaps exceeding chance across all thresholds. Isotropy was the 

last measure to show full convergence, but did so by k = 90, making the k = 100-150 range a 

conservative benchmark for achieving maximal rank agreement. This defines a convergence 

ceiling for PCA-based variance decomposition in whole-brain neuroimaging data for the AAL3 

atlas. The observed convergence window likely reflects the resolution of the AAL3 atlas’s 166 

ROIs. While this range defines full convergence for this specific parcellation, the maximum k 

required for machine-level agreement is expected to scale proportionally with atlas dimensionality.  

Another observation was that the permutation-based p-values exhibited a characteristic 

rebound at high k values (e.g., k  ≥ 160), as the overlap between random samples and observed 

sets approached the full ROI space. This behavior reflects the design of permutation tests, which 

become less discriminative as sampling exhausts the comparison space. This plateau confirms that 

p-value inflation near the maximum ROI count is an expected property of null model behavior due 

to sampling saturation.  

Together, these results confirm that the PCA-based ROI selection framework reliably 

identifies regions that meaningfully contribute to structured variance across modalities. The strong 

convergence across multiple statistical tests affirms that top-ranked ROIs are not artifacts of 

random variation, but rather reflect well-founded, mathematically principled selection criteria. In 

short, the method behaved exactly as intended, yielding high-variance-contributing, interpretable 

ROI candidates for downstream analysis. 
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2.2.4.8 Group Comparisons and Brain–Behavior Relationships (rcPCA-Derived ROIs) 

To investigate group-level differences and the behavioral relevance of connectivity across 

modalities, we used the top 20 PCA-derived ROIs from each modality-specific decomposition as 

filters. We applied this procedure to FC, dFC (sender, receiver, and total modes), SC, SFC, and 

SdFC(sender). For each modality, we extracted submatrices containing any connection that 

involved a top-ranked ROI. These filtered matrices were then analyzed to compare gamers and 

non-gamers and to examine correlations between brain connectivity and response time. 

False discovery rate (FDR) correction was applied independently within each connectivity 

modality to account for multiple comparisons during group comparisons. Two standard 

approaches were considered: the Storey-Tibshirani (ST) method(Storey & Tibshirani, 2003) 

(which estimates the proportion of true null hypotheses, π₀) and the Benjamini–Hochberg (BH) 

procedure(Benjamini & Hochberg, 1995) (which ranks p-values and applies a fixed step-up 

threshold). The choice between them was guided by both observed performance and the underlying 

assumptions of each method. 

The ST method was deemed valid for FC data only. In all FC comparisons, the estimated 

q-values remained consistently less than or equal to the corresponding uncorrected p-values, 

indicating that the proportion of true nulls could be reliably estimated and that the method behaved 

as expected. These results suggest that Storey’s assumptions were met for FC, likely due to the 

dense, symmetric, and continuous nature of FC matrices, along with their relatively uniform 

distribution of connectivity values. 

In contrast, the ST method was not reliable for the other modalities. In SC, dFC, and 

coupling metrics, q-values were frequently observed to fall below their corresponding p-values 

despite p-values being well above the uncorrected significance threshold, a pattern inconsistent 
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with valid FDR correction. This behavior indicated instability in π₀ estimation, likely due to 

skewed or zero-inflated distributions, sparse matrices, and directional asymmetries, which are 

conditions known to violate the assumptions behind Storey’s estimator. 

To ensure robust and conservative control of false discoveries in these cases, the BH 

procedure was applied instead. BH does not rely on π₀ estimation and is more stable under non-

ideal conditions. It was, therefore, used for dFC, SC, SFC, SdFC(sender) coupling, and dFC 

variants, where structural constraints or directional signal flow introduced potential sources of 

bias. For brain-behavior correlations, we computed Spearman correlations between response 

time and connectivity values for all connections involving the top 20 PCA-derived ROIs per 

modality. These correlations were tested with a significance threshold of α = 0.05, and results 

were further filtered using an effect size threshold of |r| ≥ 0.2 to ensure robustness and 

interpretability. 
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3 BRAIN NETWORK ANALYSIS: THE VISUAL STREAMS 

This chapter investigates how long-term action video game (AVG) play influences 

functional and structural connectivity within the brain’s visual processing networks, focusing 

specifically on the dorsal ("where/how") and ventral ("what") streams. These two visual 

pathways support essential components of visual cognition, including spatial attention, object 

recognition, perceptual decision-making, and visuomotor integration (Mishkin et al., 1983; 

Goodale & Milner, 1992; Kravitz et al., 2011). Since AVGs involve complex cognitive, 

perceptual, and motor demands, these pathways represent ideal targets for studying neuroplastic 

adaptation in response to sustained visuomotor training. 

Neuroplasticity refers to the brain’s capacity to reorganize its structure and function in 

response to experience. In the context of video game play, repeated exposure to challenging tasks 

has been associated with improvements in attention, object tracking, visual search, distractor 

filtering, and sensorimotor decision-making (Green & Bavelier, 2003, 2007, 2015; Dye et al., 

2009; Powers et al., 2013). These behavioral gains are accompanied by differences in brain 

structure and function, as observed through neuroimaging studies of visuospatial and motor 

systems (Basak et al., 2011; Brilliant et al., 2019; Kühn & Gallinat, 2014; Palaus et al., 2017).  

However, few studies have collected both structural and functional MRI data from the same 

participants, and even fewer have linked these neural findings to individual differences in 

behavior. As a result, it remains unclear whether imaging-based biomarkers of connectivity can 

reliably predict behavioral outcomes or whether structural and functional measures provide 

complementary explanatory value. 
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To address this gap, we used a multimodal approach focused on anatomically defined 

regions within the dorsal and ventral streams. Specifically, functional connectivity (FC), directed 

functional connectivity using time-domain Granger causality (TGC), and structural connectivity 

based on diffusion MRI measures, including fractional anisotropy (FA) and quantitative 

anisotropy (QA). Our primary goal is to test whether gamers show enhanced connectivity within 

visual stream networks and whether these connectivity patterns relate to behavior during a 

visuomotor decision-making task. 

The dorsal stream projects from early visual areas to the parietal cortex and supports spatial 

localization and motion tracking, while the ventral stream projects to temporal regions and 

supports object recognition (Goodale & Milner, 1992; Micheletti et al., 2021). These pathways 

are jointly involved in fast, accurate decision-making and are well-positioned to undergo plastic 

changes in response to the demands of AVG play. Using a region-based analysis grounded in 

anatomical specificity, we examine whether long-term gaming experience leads to strengthened 

communication between visual stream nodes and whether such patterns predict faster response 

times. 

In addition to white matter connectivity, grey matter adaptations have also been reported in 

regions associated with visuospatial attention, memory, and motor planning. Studies have shown 

cortical thickening and increased grey matter volume in these areas among gamers (Kühn & 

Gallinat, 2014; Hyun et al., 2013). To contextualize our investigation within this broader 

literature, we incorporate grey matter morphometric data provided by Chandrama Mukherjee 

(Georgia State University, under the supervision of Dr. Mukesh Dhamala). This additional 



                                                                                                                                                         

67 

analysis offers insight into structural plasticity, since neuroplasticity occurs across both white 

and grey matter. 

This chapter builds directly on prior work demonstrating that gamers exhibit significantly 

faster response times, approximately 190 milliseconds faster, without compromising accuracy, as 

detailed in Section 2.2.1. Based on this foundation, we test two key hypotheses. First, we predict 

that both functional and structural connectivity within the visual streams may undergo 

neuroplastic enhancement due to prolonged AVG play. Second, we hypothesize that these 

connectivity differences are behaviorally relevant and correlate with improved performance in 

visuomotor decision-making. Together, these findings would provide evidence that action video 

games shape brain network architecture in ways that enhance visual processing in contexts 

requiring rapid motor responses. 

3.1  Results 

3.1.1 Structural Effects  

3.1.1.1  Grey Matter Differences Between Gamers and Non-Gamers  

A significant group difference in cortical thickness was found using a one-way ANOVA, 

F(2, 41) = 19.828, p = 0.049, ηp² = 0.998. The F-statistic reflects the ratio of variance between 

groups to variance within groups, and ηp² (partial eta squared) indicates the proportion of variance 

in cortical thickness explained by group membership. All reported p-values were Bonferroni-

corrected for multiple comparisons across 70 regions of interest (ROIs) to reduce the risk of false 

positives. The most robust group differences between video game players (VGPs), i.e., gamers, 

and non-video game players (NVGP), i.e., non-gamers, were observed in the right inferior parietal 

lobule, precuneus, superior parietal lobule, and supramarginal gyrus, as shown in Figures 3.1 and 
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3.2. The results depict a significant difference in cortical thickness between video game players 

(VGP) and non-video game players (NVGP). The four regions, namely right inferior parietal, right 

precuneus, right superior parietal, and right supramarginal, had the strongest differences.   

 

Table 3.1 Group differences in cortical thickness of right parietal ROIs based on one-way 

ANOVA (df = 1, 42), with Bonferroni-corrected p-values. Reported F-values indicate test 

strength; partial eta squared (ηp²) values reflect effect sizes 

Identified regions (Thickness) p ηp² F(1,42) 

Right inferior parietal 0.006 0.169 8.521 

Right precuneus  0.002 0.210 11.154 

Right postcentral  0.055 0.085 3.902 

Right superior parietal 0.021 0.121 5.779 

Right supramarginal 0.010 0.148 7.293 
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 Figure 3.1 Gamers (VGP), exhibited significantly greater grey matter thickness than non-

gamers (NVGP) in four right parietal regions: inferior parietal lobule, precuneus, superior 

parietal lobule, and supramarginal gyrus (Bonferroni-corrected p < 0.05). The right 

postcentral gyrus showed a borderline effect (p = 0.055, Bonferroni-corrected). 

 

Figure 3.2 Grey Matter 3D Rendering of Group Differences. Non-Gamers (NVGP), and 

gamers (VGP), showed significant differences in grey matter thickness in parietal 

regions, specifically the right inferior parietal, right precuneus, right superior parietal, 

and right supramarginal areas. 
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3.1.1.2  White Matter Integrity 

The statistical comparison of structural connectivity measures, specifically fractional 

anisotropy and quantitative anisotropy, between gamers and non-gamers utilized the Wilcoxon 

rank-sum test.  Multiple comparisons were corrected using the Holm-Bonferroni method indicated 

by p* (Holm, 1979). In this analysis, gamers exhibited elevated FA values between the L SOG and 

the L IPL (p* = 0.024). Gamers also demonstrated elevated QA values between the same regions 

(L SOG and L IPL) with statistical significance (p* = 0.039). In addition to the observed elevation 

in FA and QA values within the left dorsal stream, notably between L SOG and L IPL, our 

investigation revealed heightened QA values in the right dorsal stream as well. Specifically, gamers 

exhibited increased QA R SOG and the R SPL (p* = 0.036), as well as between R SOG and the R 

IPL (p = 0.047). The increased QA between R SOG and R IPL did not survive multiple comparison 

corrections but remained significant at the individual level, warranting consideration for further 

study. To visually illustrate the significant differences in values between gamers and non-gamers, 

violin plots were constructed as shown in Figures 3.3-3.5. Structural connectivity measures, FA 

and QA, did not show a significant correlation with participants' response time. 
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Figure 3.3 Structural Connectivity in the Dorsal Stream is Elevated in Gamers. (A) Gamers 

exhibited significantly higher fractional anisotropy (FA) between the left superior occipital 

gyrus (L SOG) and the left inferior parietal lobule (L IPL) (p* = 0.024). 

(B) Gamers showed significantly higher quantitative anisotropy (QA) between the L SOG and 

L IPL (p* = 0.039). (C) Higher QA values were observed in gamers between the right superior 

occipital gyrus (R SOG) and the right superior parietal lobule (R SPL) (p* = 0.036). 

(D) A trend-level increase in QA was also observed between the R SOG and the right inferior 

parietal lobule (R IPL), though this did not survive Holm-Bonferroni correction (p = 0.047). 
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Figure 3.4. Right Dorsal Stream Connectivity Differences Between Groups. (Left) Tractography 

visualization in a representative subject showing white matter connections between the right 

superior occipital gyrus (R SOG), right superior parietal lobule (R SPL), and right inferior parietal 

lobule (R IPL). The X-axis is coded for red from right to left, the Y-axis is coded for green from 

anterior to posterior, and the Z-axis is coded for blue from superior to inferior. (Right) Group 

differences in quantitative anisotropy (QA) for the R SOG–R SPL connection, with significantly 

higher QA values observed in video game players (VGPs) compared to non-video game players 

(NVGPs) (p* = 0.036). 
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Figure 3.5 Tractography Visualization and Group Differences in Left SOG–IPL Connectivity. 

(Left) Tractography in a representative subject showing white matter connections between the 

left superior occipital gyrus (L SOG) and the left inferior parietal lobule (L IPL). Diffusion 

directions are color-coded: red for right–left (X-axis), green for anterior–posterior (Y-axis), 

and blue for superior–inferior (Z-axis). (Right) Group differences in quantitative anisotropy 

(QA) for the L SOG–L IPL connection, with significantly higher QA observed in gamers 

compared  to non-gamers (p* = 0.039). 
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3.1.2 Functional Connectivity  

3.1.2.1 Undirected Functional Connectivity  

Pairwise Pearson correlation was used to compute undirected functional connectivity (FC). 

Statistical comparison between video gamers and non-gamers was conducted using the Wilcoxon 

rank-sum test. Gamers exhibited significantly higher FC between the left superior occipital gyrus 

(L SOG) and the left superior parietal lobule (L SPL). This result survived Holm–Bonferroni 

correction for multiple comparisons across the four dorsal stream ROI connections and remained 

statistically significant (p* = 0.042). A violin plot illustrating this group difference is shown in 

Figure 3.6A. FC values were also plotted against response time (RT), and Spearman correlation 

was computed to assess the brain–behavior relationship. As shown in Figure 3.6B, FC was 

moderately and significantly correlated with RT (r = –0.41, p* = 0.026). 

 

 

Figure 3.6. Left SOG–SPL Functional Connectivity. (A) Gamers exhibited significantly 

stronger undirected functional connectivity between the left superior occipital gyrus 

(SOG) and left superior parietal lobule (SPL) (p* = 0.042, Holm–Bonferroni corrected). 

(B) A significant negative Spearman correlation was found between functional 

connectivity and response time (r = –0.41, p* = 0.026). Green dots represent gamers; 

orange dots represent non-gamers. 
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3.1.2.2 Directed Functional Connectivity  

Directed connectivity analysis was performed using pairwise Granger causality to assess 

directional influences along the visual streams. A range of model orders was tested by 

minimizing the total spectral difference between the Granger-generated time series and the 

original signal. The optimal model order for this dataset was determined to be six. Time-domain 

Granger causality (TGC) was then computed for all pairwise connections across participants. 

When comparing gamers to non-gamers, elevated TGC values were observed between the left 

superior occipital gyrus (L SOG) and the left superior parietal lobule (L SPL), with an 

uncorrected p-value of 0.044. This group difference is visually represented in Figure 3.7 using a 

violin plot. To explore brain–behavior relationships, TGC values were plotted against response 

time (RT), and a Spearman correlation was computed. As shown in Figure 3.7B, TGC exhibited 

a significant moderate negative correlation with RT (r = –0.45, p* = 0.01), indicating that 

stronger directed connectivity between L SOG and L SPL is associated with faster responses. 
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3.2 Discussion of Findings and Interpretation  

This study investigated structural and functional connectivity differences between gamers 

and non-gamers within the dorsal and ventral visual streams. Structural analyses revealed 

increased white matter integrity in gamers, particularly within the dorsal stream. Elevated FA 

and QA values in connections involving the superior occipital gyrus and inferior parietal lobule 

suggest enhanced fiber tract organization, potentially indicating greater directional coherence 

between regions involved in visuospatial integration. However, these structural differences did 

not correlate with response time (RT). 

Functional connectivity analyses revealed greater connectivity between key dorsal stream 

regions in gamers, especially between the left superior occipital gyrus and left superior parietal 

Figure 3.7. Directed Functional Connectivity L SOG → L SPL. (A) Gamers showed 

significantly higher TGC (time-lagged Granger causality) values between the left 

superior occipital gyrus (L SOG) and the left superior parietal lobule (L SPL) (p = 

0.044, uncorrected). (B) A significant negative Spearman correlation was observed 

between TGC and response time (r = –0.45, p = 0.01), indicating that stronger 

directed connectivity predicted faster responses. Gamers are shown in green; non-

gamers are shown in orange. 
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lobule. Both FC and TGC values were moderately correlated with faster RT, suggesting that 

dynamic coordination within these visuomotor pathways contributes meaningfully to behavioral 

performance. Although TGC results did not survive correction for multiple comparisons, the 

directional information they provide offers important insight into altered information flow in 

gamers and warrants further investigation. 

Additional analyses revealed increased cortical thickness in right parietal regions among 

gamers, including the IPL, SPL, precuneus, and supramarginal gyrus—areas associated with 

spatial attention, action planning, and visuomotor coordination. These findings align with 

previous work by (Kühn & Gallinat, 2014; Kühn, Gleich, et al., 2014), which demonstrated that 

video game training can lead to increased gray matter volume in prefrontal and parietal cortices. 

However, while cortical thickening may reflect long-term use-dependent plasticity, it did not 

predict performance in this rapid decision-making task. Similarly, white matter integrity, as 

measured by FA and QA, was not significantly associated with RT. This dissociation suggests 

that although structural properties such as gray and white matter may reflect the brain’s capacity 

for neural signal transmission, real-time performance may depend more directly on dynamic 

functional coordination. 

The absence of a correlation between FA and QA in visual streams with RT further 

supports the notion that functional integration plays a critical role in driving behavioral 

outcomes. Functional connections are inherently more flexible and dynamically reconfigurable 

in response to task demands, making them better suited to support time-sensitive processing 

adaptively. In contrast, white matter provides the structural scaffolding for signal transmission, 
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but this alone does not account for the moment-to-moment routing required for efficient 

visuomotor transformations. 

The enhanced functional connectivity observed in the left dorsal stream reflects a CRR-

driven adaptation, in which prolonged task engagement, such as that experienced during 

sustained action video game play, leads to cognitive resource reallocation that promotes 

localized refinement supporting more efficient integration and processing of visuomotor 

information. This adaptation is especially relevant in the context of action video games, where 

rapid and successive visuomotor decisions are required throughout gameplay. Such reallocation 

likely reduces cognitive friction, facilitating low-latency decision-making through more 

functionally connected visuomotor pathways. 

3.2.1 Concluding Remarks 

This study provides strong evidence that long-term action video game play could 

plausibly induce a neuroplastic refinement within visuospatial and sensorimotor networks, 

particularly in the dorsal stream and right parietal cortex. Gamers showed increased white matter 

integrity and cortical thickness in key visuospatial regions, along with enhanced FC within the 

dorsal visual stream, specifically between L SOG and L SPL. The functional measures, FC and 

TGC, were moderately correlated with faster response times, highlighting the importance of 

functional integration in supporting rapid visuomotor decision-making. Although the study was 

completed before the formal development of CRR, the findings align directly with its core 

premise that when task engagement induces cognitive strain, it triggers a redistribution of neural 

resources toward behaviorally relevant circuits. 
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In this light, enhanced dorsal stream connectivity in gamers reflects not just 

reinforcement through use but a dynamic adaptation shaped by task demands. The lack of 

correlation between structural measures and response time supports this view, suggesting that 

while white matter and cortical thickness provide scaffolding, it is functional integration that is 

more associated with real-time performance. 

CRR accounts for this distinction by predicting that long-term adaptations emerge in 

networks exposed to high cognitive load, which match the demands of rapid visuomotor 

decision-making in action video games. In sum, the results of this chapter offer converging 

structural and functional evidence for experience-driven plasticity in task-relevant systems. They 

retrospectively validate CRR’s logic and show how regionally focused connectivity analyses can 

uncover the neural basis of behavioral adaptation in high-performance environments. 
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4 WHOLE-BRAIN ANALYSIS: TRACTOGRAPHY CONSTRAINED FUNCTIONAL 

AND DIRECTED CONNECTIVITY 

Within the context of video game–based neuroimaging studies, relatively few have 

integrated both structural and functional MRI data within a unified analysis; fewer still have 

done so in healthy, non-addicted gamers (Bediou et al., 2023; Brilliant et al., 2019; Kühn et al., 

2019; Palaus et al., 2017). Moreover, while neuroimaging evidence strongly supports widespread 

plasticity in gamers, many of these studies lack behavioral validation via direct cognitive 

assessments, making it difficult to determine which connectivity differences translate into 

measurable cognitive advantages (Brilliant et al., 2019). As a result, the relationship between 

specific neural adaptations and behavioral performance remains an open question, particularly in 

how functional network coordination operates within the fundamental constraint that rapid 

interregional communication is gated by white matter anatomy (Filley & Fields, 2016). 

This chapter investigates how long-term action video game play impacts both functional 

and structural connectivity within anatomically plausible white matter pathways. While 

mechanisms of neuroplasticity, such as Hebbian plasticity, long-term potentiation, synaptic 

pruning, neurogenesis, and myelination, have been studied extensively at the mesoscale 

(Puderbaugh & Emmady, 2024), a unifying framework that links these processes to large-scale 

adaptations remains elusive. 

To address this gap, Cognitive Resource Reallocation (CRR) is introduced as a candidate 

explanatory principle for how mesoscale neuroplasticity gives rise to large-scale, experience-

driven changes in network dynamics. CRR is defined as the dynamic redistribution of metabolic 

and functional resources toward behaviorally relevant, anatomically plausible circuits in 

response to strenuous cognitive demands.  Within the context of action video games (AVGs), 
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CRR promotes the progressive optimization of neural systems in response to sustained cognitive 

strain, as imposed by challenging, sensory-rich environments characteristic of AVGs. 

Over time, sustained engagement with AVGs may establish a baseline level of 

visuomotor efficiency, driving adaptive refinement of cognitive functions that support enhanced 

visuomotor decision-making such as visual processing (Churchland & Shadlen, 2009; Goodale et 

al., 1991; Green & Bavelier, 2007), visuomotor integration (Cahill et al., 2024; Kravitz et al., 

2011), attentional control (Bavelier & Green, 2019; Bavelier & Green, 2025), and cognitive 

flexibility (Glass et al., 2013; Okazawa & Kiani, 2023). This would account for the enhanced 

visuomotor decision performance observed in gamers exhibiting approximately 190ms faster 

response times compared to non-gamers, without compromising accuracy.  

To formally test the CRR hypothesis, we constrain both undirected and directed 

functional connectivity by anatomically plausible white matter tracts. Structurally constrained 

functional connectivity FC (SC-FC) and structurally constrained directed connectivity dFC (SC-

dFC) matrices are derived using binarized whole-brain tractography masks, as described in 

Section 2.2.3. This approach ensures that both FC, estimated by pairwise Pearson correlation, 

and dFC, estimated by time-domain Granger causality, are grounded in biologically valid 

anatomical substrates (Greaves et al., 2025; Dhamala et al., 2008). 

By integrating functional and structural information, we can identify behaviorally 

relevant, anatomically constrained connectivity differences between gamers and non-gamers. 

This approach offers a structurally informed measure of effective connectivity (Bajaj et al., 

2016), allowing us to assess whether prolonged gameplay reshapes neural communication 

patterns in ways that are both biologically feasible and behaviorally advantageous. 
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In doing so, this chapter provides a crucial test of CRR as a formal mechanism of 

experience-driven neuroplasticity. If supported, this work may not only explain how gamers 

optimize visuomotor decision-making but also reinforce the value of video games as a rigorous 

experimental medium for probing cognitive adaptation and, ultimately, as a tool for designing 

theoretically guided cognitive interventions. 

4.1  Structurally Constrained Functional and Directed Connectivity Results 

4.1.1  SC-FC and SC-dFC Group Differences Between Gamers and Non-Gamers 

To investigate large-scale task-relevant connectivity adaptations associated with action 

video game playing, we examined SC-FC and SC-dFC between long-term action video gamers 

and non-gamers, within distinct major anatomical groups of the AAL3 atlas. A detailed 

categorization of the AAL3 atlas regions by these anatomical groups is outlined in Section 

2.2.3.3. By constraining our analysis with underlying white matter pathways, this approach 

ensures that observed group differences reflect meaningful adaptations rather than arbitrary or 

spurious connections. 

The SC-FC results of the significant connections are presented as a heat map of mean 

differences between groups, displayed as a connectivity matrix in Figure 4.1a. Connections 

where gamers showed stronger structurally constrained functional connectivity are indicated by 

warm colors (red, orange), whereas connections stronger in non-gamers are indicated by cool 

colors (cyan, blue). Gamers exhibited a significantly greater number of enhanced (p < 0.05) SC-

FC connections compared to non-gamers (278 ± 17 vs. 220 ± 15; Z = 2.60, p < 0.01). 

Significance was determined using a Gaussian approximation to estimate the standard error of 

total connection counts. SC-FC analyses revealed greater connectivity in gamers across occipital-
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limbic, occipital-parietal, frontal-limbic, and frontal-parietal pathways. In contrast, non-gamers 

exhibited stronger SC-FC between frontal-occipital regions and within the cerebellum (Figure 

4.1a). 

The SC-dFC results are shown in Figure 4.1b as a heat map of mean group differences, 

using the same matrix format as Figure 4.1a. Although non-gamers exhibited a greater total 

number of significantly stronger SC-dFC (313 ± 18 vs. 249 ± 16; Z = 2.70, p < 0.01), gamers 

showed greater SC-dFC between frontal and occipital regions, suggestive of more targeted top-

down visual processing. Non-gamers showed significantly greater SC-dFC within cerebellar 

regions, consistent with the SC-FC findings and reinforcing a distinct inter-cerebellar profile. 

 

Figure 4.1 Group Differences in SC-FC and SC-dFC Between Gamers and Non-

Gamers (a) SC-FC (-) group differences, where positive values indicate greater 

connectivity in gamers and negative values indicate stronger connectivity in non-

gamers (p < 0.05). (b) SC-dFC (→) group differences measured using time-domain 

Granger causality (TGC) to capture effective connectivity (p < 0.05). 
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4.1.2  SC-FC and SC-dFC Correlations with Response Times 

To evaluate how response time (RT) relates to structurally constrained functional 

connectivity, we examined its Spearman correlation with both SC-FC and SC-dFC. This analysis 

identified behaviorally relevant connections and revealed which group differences may help 

explain the response time advantage observed in gamers within anatomically constrained 

pathways. Results are shown in Figure 4.2 and summarized in Tables 4.1 and 4.2.  

4.1.2.1 SC-FC Correlations with Response Times 

Several SC-FC pairwise relationships showed significant negative correlations with RT, 

indicating that stronger connectivity was associated with faster performance. These included 

connections between the left inferior temporal and left cerebellum crus I (r = –0.40, p = 0.012), 

right lingual and right cerebellum crus I (r = –0.38, p = 0.016), and left insula and left superior 

temporal cortex (r = –0.37, p = 0.019). Additional correlations were observed in early visual 

areas, including left cuneus – left middle occipital (r = –0.35, p = 0.029) and right calcarine – left 

cuneus (r = –0.33, p = 0.039). The cuneus, positioned just above the calcarine sulcus, is thought 

to play a key role in routing visual input into the dorsal stream (Cohen, 2011; Zhang et al., 

2019). The cuneus’ involvement here suggests that faster responders may engage more early-

stage dorsal relays for visuomotor integration. 

Several SC-FC relationships showed significant positive correlations with RT, indicating 

that stronger connectivity was associated with slower performance. These included left 

supramarginal – left middle temporal (r = 0.40, p = 0.012), left cerebellum crus I – Vermis 4,5 (r 

= 0.38, p = 0.015), and left middle temporal – left inferior temporal (r = 0.37, p = 0.018). 

Additionally, SC-FC between the left hippocampus and left parahippocampus was positively 
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correlated with response time (r = 0.36, p = 0.021). All results are summarized in Table 4.1 and 

displayed in Figure 4.2a.  

 

Table 4.1 Significant Spearman correlations between pairwise SC–FC connectivity and response 

time involving AAL3 atlas regions 

Region A Region B r p 

Temporal Inf L Cerebellum Crus1 L -0.403 0.012 

SupraMarginal L Temporal Mid L 0.396 0.012 

Cerebellum Crus1 L Vermis 4,5 0.385 0.015 

Lingual R Cerebellum Crus1 R -0.379 0.016 

Temporal Mid L Temporal Inf L 0.373 0.018 

Fusiform R Cerebellum Crus1 R -0.352 0.026 

Precuneus L Precuneus R -0.32 0.043 

Cerebellum 8 L Cerebellum 10 L 0.32 0.044 

 

4.1.2.2 SC-dFC (→) Correlations with Response Times 

A wide array of effective pairwise causal relationships given by SC-dFC was negatively 

correlated with RT. The strongest correlation was observed between the right subgenual and 

supracallosal anterior cingulate cortex (r = –0.51, p = 0.0009). Additional SC-dFC relationships 

associated with faster response times included left temporal middle → left lingual (r = –0.46, p = 

0.003), left rolandic operculum → left insula (r = –0.46, p = 0.003), left insula → left superior 

temporal (r = –0.46, p = 0.003), and left superior temporal → left rolandic operculum (r = –0.44, 

p = 0.004). 
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Several subcortical and frontal pathways were also significant, including left putamen → 

left insula (r = –0.45, p = 0.005), left frontal operculum → left insula (r = –0.43, p = 0.006), and 

left putamen → left superior frontal gyrus (r = –0.41, p = 0.009). Right hemisphere relationships 

included right frontal inferior triangularis → right insula (r = –0.37, p = 0.019), right frontal 

inferior orbitalis → right rolandic operculum (r = –0.37, p = 0.021), and right insula → right 

frontal inferior operculum (r = –0.35, p = 0.026). 

Additional significant SC-dFC findings included right rolandic operculum → left 

supramarginal (r = –0.37, p = 0.019), left superior parietal → itself (r = –0.36, p = 0.022), right 

frontal medial orbital → right rectus (r = –0.37, p = 0.022), and left parahippocampus → left 

superior temporal pole (r = –0.36, p = 0.022). One relationship, right insula → right posterior 

orbitofrontal cortex (r = 0.36, p = 0.025), showed a significant positive correlation with RT. All 

results are summarized in Table 4.2 and displayed in Figure 4.2b. 
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Table 4.2 Significant Spearman correlations between pairwise SC–dFC connectivity (source to 

target) and response time involving AAL3 atlas regions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source Region Target Region r p 

ACC sub R ACC sup R -0.517 0.001 

Rolandic Oper L Insula L -0.461 0.003 

Heschl L Temporal Sup L -0.457 0.003 

Temporal Sup L Rolandic Oper L -0.445 0.004 

Cerebellum Crus2_R Cerebellum Crus1 R 0.457 0.005 

Putamen L Insula L -0.452 0.005 

Frontal Inf Oper R Insula_R -0.427 0.006 

Vermis 8 Cerebellum 8 R -0.429 0.008 

Putamen L Frontal Sup 2 L -0.41 0.009 

Heschl L Insula L -0.409 0.009 

Cerebellum_Crus1_R Vermis 6 -0.421 0.01 

Temporal Inf L Lingual L -0.41 0.01 

Vermis 4,5 Vermis_6 -0.402 0.012 

ACC pre L ACC sup R -0.377 0.017 

Cerebellum Crus2 L Cerebellum Crus1 L 0.382 0.019 

Rolandic Oper L SupraMarginal L -0.37 0.019 

Frontal Inf Tri R Insula R -0.37 0.019 

Insula L Rolandic Oper L -0.365 0.021 

ParaHippocampal L Temporal Pole Sup L -0.364 0.022 

Frontal Med Orb R Rectus L -0.373 0.022 

Parietal Inf_R Parietal Sup R -0.362 0.022 

Insula R OFCpost R 0.355 0.025 

Insula R Frontal Inf Oper R -0.353 0.026 

Frontal Inf Orb 2 R Frontal Inf Tri R -0.353 0.026 

Temporal Sup L Insula_L -0.349 0.028 

Cerebellum 4,5 R Vermis_6 -0.348 0.029 

Lingual R Cerebellum 6 R -0.341 0.032 

ACC pre R ACC pre_L -0.334 0.036 

ACC pre R ACC sup R -0.331 0.038 

Cuneus L Cuneus R -0.323 0.043 

Occipital Mid L Lingual L -0.323 0.043 
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 Figure 4.2 Correlations Between Functional Connectivity Measures and Response 

Times. (a) Significant Spearman correlations (p < 0.05) between structurally 

constrained functional connectivity (SC-FC) and response time (RT), ranked by 

ascending p-values, separated by (i-v) negative and (vi-ix) positive correlation 

coefficients. Negative correlations reflect connections where increased SC-FC predicts 

faster decision-making, while positive correlations indicate connections where stronger 

SC-FC is associated with delayed RT. (b) Significant Spearman correlations (p < 0.05) 

between structurally constrained directed functional connectivity (SC-dFC) and 

response times, ranked from lowest to highest p-values, separated by negative (i-xv) 

and positive (xiv) correlation, capturing effective connectivity linked to visuomotor 

decision RT. Region names are derived from the AAL3 atlas. 
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4.1.3  Behaviorally Relevant Group Differences in SC-FC and SC-dFC 

Among the behaviorally relevant SC-FC connections, a significant group difference was 

observed between the left middle temporal and inferior temporal gyri. This connection was 

significantly stronger in non-gamers (p = 0.002) as shown in Figure 4.3a(i) and showed a 

positive correlation with response times (r = 0.37, p = 0.018) which is displayed in Figure 

4.2a(vii).  

In addition, two behaviorally relevant SC-dFC group differences emerged. The effective 

connection from the left parahippocampus to the left superior temporal pole was stronger in 

gamers (p = 0.034) shown in Figure 4.3a(ii), and was negatively correlated with response times 

(r = –0.36, p = 0.022) shown in Figure 4.2b(xii). In contrast, the effective connection from the 

right insula to the right posterior orbital cortex was stronger in non-gamers (p = 0.046) shown in 

Figure 4.3a(iii), and was positively correlated with response times (r = 0.36, p = 0.025) 

demonstrated in Figure 4.2b(xvi). Figure 4.3b provides a visual representation of these 

connections in gamers and non-gamers, rendered using DSI Studio. 
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Figure 4.3 Behaviorally Relevant Connectivity Differences Between  Gamers and Non-

Gamers. (a) Violin plots are depicted comparing functional (i) and directed (ii, iii) connectivity 

for key brain regions, including Temporal Mid L – Temporal Inf L, Parahippocampal L 

→Temporal Pole Sup L, and Insula R →OFCpost R, with significant group differences 

indicated by p-values. (b) 3D renderings of the respective regions for Gamers (left) and Non-

Gamers (right), highlighting the anatomical locations where significant connectivity 

differences were observed, are shown. The brain regions shown are left mid-temporal gyrus, 

left inferior temporal gyrus, left parahippocampus, left superior temporal pole, right insula, 

and right orbitofrontal cortex. The renderings were created using the AAL3 atlas and 

visualized in DSI Studio. 
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4.1.4  SC-FC Graph-Theoretic Network Analysis 

After applying structural connectivity (SC) constraints to the functional connectivity (FC) 

data, we retained the top 95% of the strongest connections to construct binarized SC-FC graphs 

for network analysis. This threshold maximized the characterization of the SC-FC network while 

maintaining sparsity. At the global level, network measures, including characteristic path length, 

assortativity, and global efficiency, did not significantly differ between gamers and non-gamers. 

To further investigate topological differences, we examined local graph-theoretic metrics, 

specifically local efficiency and node degree. Local efficiency reflects regional integration by 

measuring how effectively information is exchanged among a node’s immediate neighbors if the 

node itself is removed. Node degree, a local measure of centrality based on how many direct 

links a node has to other regions in the network, reflects the extent to which a region participates 

in the SC-FC network. 

4.1.4.1 Group Differences in Local Efficiency and Node Degree 

Gamers exhibited significantly greater local efficiency in the right middle occipital gyrus 

(p = 0.02) and right supramarginal gyrus (p = 0.047), suggesting stronger localized integration 

within dorsal visual and parietal circuits. In contrast, non-gamers showed greater local efficiency 

in the left pallidum (p = 0.047), a subcortical region involved in motor regulation and 

reinforcement learning. 

For node degree, gamers demonstrated significantly higher values in the right inferior 

frontal gyrus (triangular part) (p = 0.015), right insula (p = 0.017), and two subdivisions of the 

left anterior cingulate cortex subgenual (p = 0.028) and pregenual (p = 0.032). These are key 

nodes in the salience and cognitive control networks, supporting integration of internal state 
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monitoring and goal-directed action. By contrast, non-gamers showed higher node degree in the 

left cerebellum 3 (p = 0.009) and left hippocampus (p = 0.047), reflecting greater centrality in 

circuits involved in motor coordination and memory-based retrieval. These results are 

summarized using violin plots, which show the group distributions in Figure 4.4a. 

4.1.4.2 Correlations Between Local Efficiency and Node Degree and Response Times 

Several SC-FC graph metrics were significantly correlated with response times across 

participants. Negative correlations were found for local efficiency in the left superior occipital 

gyrus (r = –0.38, p = 0.016) and node degree in the right insula (r = –0.32, p = 0.047), indicating 

that higher values were associated with faster responses.  Positive correlations were observed for 

node degree in the left superior occipital gyrus (r = 0.38, p = 0.019) and left cerebellum 3 (r = 

0.32, p = 0.044), where higher values were associated with slower responses. The brain–behavior 

correlations between SC-FC and RT are shown in Figure 4.4b. 
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Figure 4.4 Group Differences in Binarized Undirected Connectivity Network Metrics and 

Brain-Behavior Correlations. (a) Violin plots depicting group differences in binarized 

directed functional connectivity network metrics, including (i-vii) local efficiency and (ix-

xii) node degree, for gamers and non-gamers.(b) Spearman correlations between directed 

functional connectivity network metrics and response times. Negative correlations indicate 

an association with faster responses, while positive correlations reflect an association with 

slower responses. Region names are taken from the AAL3 atlas. 
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4.1.5 SC-dFC Graph-Theoretic Network Analysis 

For the binarized graph-theoretic analysis of structurally constrained directed functional 

connectivity (SC-dFC), we retained the top 10% of the strongest directed connections, 

accounting for the sparser and asymmetric nature of effective connectivity. As in the SC-FC 

analysis, global network measures—including characteristic path length, assortativity, and global 

efficiency—did not significantly differ between gamers and non-gamers. 

We again focused on local efficiency and node degree, metrics that capture regional 

integration and network centrality, respectively.  

4.1.5.1 Group Differences in SC-dFC Local Efficiency and Node Degree 

Gamers exhibited significantly greater local efficiency in the right middle occipital gyrus 

(p = 0.026) and left precentral gyrus (p = 0.044), suggesting more integrated local processing 

within early visual and motor areas. Non-gamers, by contrast, had greater local efficiency in the 

left pallidum (p = 0.034) and vermis 4,5 (p = 0.047), indicating increased localized interaction 

within subcortical and cerebellar structures. 

For node degree, gamers showed significantly higher values in multiple frontal and 

salience-related regions, including the left anterior cingulate (pregenual) (p = 0.008), right insula 

(p = 0.018), right rectus (p = 0.026), left superior medial frontal (p = 0.027), right inferior frontal 

(opercular) (p = 0.027), left posterior orbital (p = 0.045), and right inferior frontal (triangular) (p 

= 0.047). Non-gamers had significantly greater node degree in the left cerebellum 3 (p = 0.013) 

and left hippocampus (p = 0.031), consistent with stronger centrality in motor and memory-

related regions. These results are summarized using violin plots, which show the group 

distributions in Figure 4.5a. 
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4.1.5.2 Correlations Between SC-dFC Graph Metrics and Response Times 

Both local efficiency and node degree were significantly correlated with response times 

(RT) across participants. We observed several negative correlations, indicating that higher graph 

values were associated with faster responses. For local efficiency, significant negative 

correlations were found in the left superior occipital (r = –0.48, p = 0.002), left supplementary 

motor area (r = –0.45, p = 0.005), left supramarginal (r = –0.40, p = 0.013), left superior 

temporal pole (r = –0.39, p = 0.016), left amygdala (r = –0.39, p = 0.016), left rectus (r = –0.34, 

p = 0.036), left parahippocampus (r = –0.43, p = 0.006), and left middle frontal gyrus (r = –0.41, 

p = 0.009). For node degree, faster response times were associated with higher values in the left 

insula (r = –0.51, p = 0.001), left posterior orbital (r = –0.37, p = 0.018), left anterior cingulate 

(pregenual) (r = –0.33, p = 0.045), and right postcentral gyrus (r = –0.32, p = 0.048). Only one 

positive correlation was observed, with higher node degree in the left superior occipital gyrus 

associated with slower response times (r = 0.32, p = 0.048). The brain–behavior correlations 

between SC-dFC and RT are shown in Figure 4.5b. 

 

 

 

 

 

 

 

 

 



                                                                                                                                                         

96 

 

 

Figure 4.5 Group Differences in Binarized Directed Connectivity Network Metrics and 

Brain-Behavior Correlations. (a) Violin plots depicting group differences in binarized 

directed functional connectivity network metrics, including (i-vii) local efficiency and (ix-

xii) node degree, for gamers and non-gamers.(b) Spearman correlations between directed 

functional connectivity network metrics and response times. Negative correlations indicate 

an association with faster responses, while positive correlations reflect an association with 

slower responses. Region names are taken from the AAL3 atlas 
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4.2 Discussion of Findings and Interpretation 

The results of this analysis provide compelling evidence that long-term action video 

game playing induces neuroplastic changes in structurally constrained functional and directed 

connectivity, leading to more efficient decision-making. These findings reveal distinct 

differences between gamers and non-gamers in connectivity patterns, brain-behavior 

relationships, and local network properties, suggesting a fundamental shift in visuomotor 

processing and decision-making strategies. 

4.2.1 Structurally Constrained Functional Connectivity Profiles  

4.2.1.1 SC-FC Gamer and Non-Gamer Connectivity Patterns  

Gamers exhibited a significantly greater number of enhanced  (p < 0.05) SC-FC 

connections than non-gamers (278 ± 17 vs. 220 ± 15, Z = 2.60, p < 0.01). The SC-informed FC 

connectivity matrix shown in Figure 4.1a revealed more prominent connectivity shifts in favor of 

gamers across occipital-limbic, occipital-parietal, frontal-limbic, and frontal-parietal pathways. 

This pattern is consistent with the predictions of Cognitive Resource Reallocation (CRR), 

suggesting that video game experience enhances neural synchrony within circuits that support 

visual processing, attentional control, visuomotor integration, flexible action selection, and 

efficient decision-making under time pressure. 

In the occipital-limbic pathway, increased SC-FC suggests stronger synchronization 

between regions involved in salience detection and early visual processing, potentially 

facilitating more effective extraction of task-relevant visual cues (Menon, 2015). Enhanced 

occipital-parietal connectivity supports the integration of spatial and motion cues necessary for 

tracking object trajectories, indicating a greater reliance on endogenous attentional mechanisms 
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to guide action (Beffara et al., 2022; Goodale & Milner, 1992). Strengthened frontal-limbic 

connections reflect improved integration of executive and affective signals relevant to attentional 

control and adaptive behavior (Chen et al., 2018; Kennerley & Walton, 2011). Finally, increased 

frontal-parietal coupling aligns with enhanced intentional action planning and selection during 

decision-making tasks, consistent with prior models of visuomotor coordination (Andersen & 

Cui, 2009). 

In contrast, non-gamers exhibited stronger SC-FC connectivity between frontal and 

occipital regions, suggesting a greater reliance on executive-visual synchrony rather than the 

anticipatory visuomotor response selection observed in gamers (Gonzalez Alam et al., 2024). 

Additionally, greater intra-cerebellar connectivity in non-gamers indicates a heavier reliance on 

feedback-driven motor adjustments, given the cerebellum’s known role in motor modulation 

(Stoodley & Schmahmann, 2018), which likely reflects a compensatory mechanism for less 

adaptive top-down motor planning and response execution. These findings suggest that non-

gamers' visuomotor processing strategies are less optimized, characterized by broader, more 

reactive, back-and-forth engagement between the visual, executive, and motor correction 

systems rather than the targeted, feedforward, adaptive response selection characterized by SC-

FC connectivity patterns found in gamers. 

4.2.1.2 SC-dFC Gamer and Non-Gamer Connectivity Patterns  

Non-gamers exhibited a greater total number of significantly stronger (p < 0.05) SC-dFC 

connections (313 ± 18 vs. 249 ± 16, Z = 2.70, p < 0.01) shown by the SC-dFC connectivity 

matrix in Figure 4.1b, suggesting a greater need for directed interactions to support their 

visuomotor decision-making. In contrast, gamers displayed more frontal-occipital and frontal-
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parietal SC-dFC connections, indicating a shift toward more targeted signaling between 

executive, visual, and motor regions, whereas non-gamers seem to rely more on broader, frontal-

occipital engagement. Additionally, non-gamers exhibited significantly greater intra-cerebellar 

SC-dFC interactions, reinforcing their reliance on corrective motor adjustments rather than 

anticipatory control mechanisms. 

4.2.2  SC-FC and SC-dFC  Brain–Behavior Correlations  

The following interpretations are grounded in well-established canonical neural anatomy 

and physiology of the involved brain regions, where functional roles are less well established in 

the literature. 

4.2.2.1 SC-FC Correlations with Response Times 

 Stronger connectivity between occipital, cerebellar, and multimodal sensory regions was 

associated with faster response times (RTs), suggesting that these pathways facilitate efficient 

visuomotor processing. This pattern is demonstrated clearly in Figure 4.2a. For example, 

connectivity between the left inferior temporal gyrus and the left cerebellum Crus I (r = –0.40, p 

= 0.012) suggests that motor planning and control processes, synchronized with object 

recognition (such as identifying moving target dots), facilitate faster decision-making and 

response execution. Similarly, connectivity between the right cerebellum Crus I and the right 

lingual gyrus (r = –0.38, p = 0.016) implies that visual scene processing paired with anticipatory 

motor planning plays a key role in rapid response execution. 

Connectivity between the left insula and the left superior temporal gyrus (r = –0.37, p = 

0.019) modulates interoceptive attention to auditory stimuli, effectively gatekeeping salient 

auditory information from executive engagement and optimizing cognitive resources for efficient 

visuomotor decision-making. Additional connectivity between the right calcarine and the left 
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cuneus (r = –0.33, p = 0.039), as well as between the left cuneus and left middle occipital gyrus 

(r = –0.35, p = 0.029), indicates that enhanced early-stage visual processing supports rapid 

extraction of motion cues and enables quicker decision-making. 

Conversely, stronger SC-FC connectivity in memory-related and feedback-driven motor 

regions has a positive correlation with RT, which is tracked with slower responses. This pattern 

suggests a reliance on deliberative processing rather than real-time visuomotor integration. For 

instance, connectivity between the left hippocampus and the left parahippocampus (r = 0.36, p = 

0.021) points to an antagonism between scene-specific spatial configuration and object-in-place 

cognitive mapping, which may slow decision-making. Similarly, stronger connectivity between 

the left cerebellum Crus I and the left vermis 4,5 (r = 0.38, p = 0.015) indicates increased 

reliance on corrective motor feedback, which could prolong response execution. 

4.2.2.2  SC-dFC Correlations with Response Times 

To investigate how structurally constrained directed functional connectivity (SC-dFC) 

influences response time (RT), we assessed correlations between connectivity strength and RT 

across all participants, as depicted in Figure 4.2b.  

Several SC-dFC connections were significantly associated with faster response times. For 

instance, directed connectivity from the right anterior cingulate (subgenual) to the right anterior 

cingulate (supracallosal) (r = –0.51, p = 0.0009) was linked to urgency-driven response selection. 

This pathway is a major constituent of the dorsal attention network and likely serves as a high-

priority signal that prompts executive systems to initiate rapid decision-making. 

SC-dFC from the left middle temporal gyrus to the left lingual gyrus (r = –0.46, p = 

0.003) supports the integration of high-level visual processing, such as object recognition, given 
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the middle temporal gyrus’s proximity to the ventral stream, with color discrimination in the 

lingual gyrus. This integration may support rapid discrimination of color-based target dots from 

distractors during the sensory accumulation stage of a visuomotor decision. 

Interactions from the left rolandic operculum to the left insula (r = –0.46, p = 0.003) and 

from the left insula to the left superior temporal gyrus (r = –0.46, p = 0.003) taken together 

suggest enhanced modulation of interoceptive attention to salient stimuli (Menon, 2015). These 

pathways likely act to gate salient auditory information away from executive resources, 

facilitating scanner noise to be more of a persistent background feature than a salient distraction. 

Additionally, SC-dFC from the left superior temporal gyrus to the left rolandic operculum (r = –

0.44, p = 0.004) further supports streamlined sensory integration, likely under insular 

modulation, facilitating faster RT. Furthermore, based on known physiology, this loop may 

reflect interoceptive signaling prompting the retrieval or prioritization of high-level sensory 

information to guide an imminent motor response (Blefari et al., 2017). 

Connectivity from the left putamen to the left insula (r = –0.45, p = 0.005) and from the 

left putamen to the left superior frontal gyrus (r = –0.41, p = 0.009) highlights the putamen’s role 

in motor preparation and control (Purves D, 2001), suggesting that basal ganglia–insular circuits 

support the rapid coordination of motor action under time pressure. 

Fronto-insular interactions were also predictive of faster response times. Directed 

signaling from the right inferior frontal gyrus (triangularis) to the right insula (r = –0.37, p = 

0.019) suggests unconscious perceptual priming and enhanced attentional control (Shi et al., 

2022). Likewise, connectivity from the right inferior frontal gyrus (orbital) to the right rolandic 

operculum (r = –0.37, p = 0.021) likely reflects a goal-directed control mechanism that bridges 
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the brain’s interoceptive goal-directed map, such as the intention to make the correct decision, 

with voluntary motor execution of finger movement (Blefari et al., 2017; Shi et al., 2023). 

Inter-parietal connections also tracked with faster responses. Directed signaling from the 

left supramarginal gyrus to the left superior parietal lobule (r = –0.37, p = 0.019), and from the 

left inferior parietal lobule to the left superior parietal lobule (r = –0.36, p = 0.022), supports 

visuospatial attention, motor planning, and sensorimotor integration. These dorsal stream 

pathways likely enhance rapid action selection by engaging the dorsal attention network. 

SC-dFC from the right medial orbital frontal gyrus to the right rectus gyrus (r = –0.37, p 

= 0.022) may reflect goal-directed control over response selection. Although the precise 

cognitive role of the gyrus rectus remains under investigation, prior work suggests its 

involvement in value-based decision-making and executive control (Rudebeck & Rich, 2018; 

Rolls, 2021). 

A SC-dFC connection from the left parahippocampal gyrus to the left superior temporal 

pole (r = –0.36, p = 0.022) supports the integration of scene-specific contextual information, 

which may facilitate quicker decisions by rapidly resolving target–distractor dynamics in 

complex visual environments by more readily integrating relative motion of the target compared 

to the distractor. Finally, signaling from the right insula to the right inferior frontal operculum (r 

= –0.35, p = 0.026) suggests close coordination between interoceptive and motor regions 

(Dziedzic et al., 2022), further reinforcing the importance of insular modulation in facilitating 

fast, goal-oriented actions. 
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One SC-dFC connection had a positive correlation and was significantly associated with 

slower response times, namely, the SC-dFC interaction from the right insula to the right posterior 

orbitofrontal cortex (r = 0.36, p = 0.025). Given the insula’s role in interoception and the 

orbitofrontal cortex’s function in decision inhibition and uncertainty evaluation, this connection 

may reflect a shift toward internal state monitoring and deliberative control, which slows down 

response execution (Gogolla, 2017; Rolls, 2004; Rudebeck & Rich, 2018). 

4.2.3 Behavioral Correlates of SC-FC and SC-dFC Group Differences 

We observed group-level differences in SC-FC and SC-dFC patterns between gamers and 

non-gamers that tracked with RT. Non-gamers exhibited stronger connectivity between the left 

middle temporal gyrus and left inferior temporal gyrus (p = 0.002) and showed a positive 

correlation with response times (r = 0.37, p = 0.018)  suggesting a greater reliance on detailed 

object recognition (Conway, 2018; Holdstock, 2005; Kakaei et al., 2021) before committing to a 

decision. In contrast, gamers exhibited stronger connectivity from the left parahippocampal 

gyrus to the left superior temporal pole (p = 0.034) and was negatively correlated with response 

times (r = –0.36, p = 0.022). The parahippocampus is crucial for spatial scene processing 

(Burgess & O'Keefe, 2003), while the superior temporal pole is known as a convergent hub of 

high-level sensory information and perhaps of high-level information convergence in general 

(Herlin et al., 2021).   

Stronger SC-dFC from the parahippocampus to the superior temporal pole in gamers 

suggests greater integration of scene-specific contextual information, likely allowing for more 

efficient decision-making by more readily facilitating the rapid integration of the relative motion 

of target dots compared to distractors.  Rather than solely relying on detailed object recognition, 

gamers place greater emphasis on the broader spatial and contextual relevance of the scene to 
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guide their actions compared to non-gamers. This shift from object-based analysis to greater 

context-driven reasoning would contribute to greater decision efficiency in dynamic 

environments, reinforcing that long-term action video game playing experience leads to 

enhancements in adaptive visuomotor processing. 

Additionally, non-gamers demonstrated stronger SC-dFC from the right insula to the 

right posterior orbitofrontal cortex (OFC) (p = 0.046) and had a positive correlation with RT ( r 

= 0.36, p = 0.025). The right insula plays a key role in internal state monitoring and uncertainty 

assessment (Gogolla, 2017). The posterior OFC contributes to evaluating outcomes and creating 

cognitive maps to navigate goal-directed behavior, such as the goal of picking the correct 

direction that target dots are moving in a visuomotor decision (Shi et al., 2023).  Stronger 

connectivity involving these regions in non-gamers likely reflects a heightened emphasis on 

progressively reducing uncertainty before committing to a goal-directed decision of selecting the 

correct direction the target dots were moving, resulting in longer stimulus evaluation times at the 

expense of RT. This aligns with the well-established speed-accuracy tradeoffs in visuomotor 

decision-making, where prioritizing certainty and deliberation comes at the cost of slower 

response times (Drugowitsch et al., 2014; 2015).In contrast, gamers likely engage in more real-

time error correction to maintain accuracy and more effectively address uncertainty earlier in the 

decision-making process, enabling less reliance on feedback-driven inter-cerebellar corrections. 

This is supported by a shift in visuomotor decision strategy that more readily incorporates 

integration of scene-relevant information provided by their enhanced parahippocampal → 

superior temporal pole connectivity. 

Together, these findings support the CRR hypothesis, demonstrating that long-term AVG 

experience plausibly promotes the reallocation of neural resources toward context-sensitive 



                                                                                                                                                         

105 

circuits that enable rapid, adaptive visuomotor decision-making. In contrast, non-gamers appear 

to rely more heavily on evaluative and uncertainty-monitoring systems that prioritize accuracy at 

the cost of speed. This divergence reflects distinct visuomotor decision-making strategies 

between gamers and non-gamers. 

4.2.4 SC-FC Local Efficiency & Node Degree  

For the undirected graph-theoretic network analysis, we applied a 95% threshold to 

binarize the SC-FC data, retaining the top 95% of the strongest connections after applying 

tractography constraints. This approach was chosen to capture as much of the structural network 

as possible while ensuring that only valid, non-spurious connections were included. 

As in previous sections, the following interpretations are grounded in canonical neural 

anatomy and physiology of the involved brain regions, with references provided where 

functional roles are less well established in the literature. 

4.2.4.1  Local Efficiency Group Differences 

Graph-theoretic analysis revealed significant group-level differences in local efficiency, 

highlighting distinct patterns of network integration between gamers and non-gamers displayed 

in Figure 4.4a. Gamers exhibited significantly greater local efficiency in the right middle 

occipital gyrus (MOG) (p = 0.02). The right MOG plays a central role in integrating visual input 

with egocentric spatial orientation and processing spatial information, supporting visuomotor 

coordination (Renier et al., 2010). Increased local efficiency in this region likely facilitates low-

latency visual processing and rapid motion tracking, advantages that are particularly beneficial in 

fast-paced visuomotor decision-making tasks requiring dynamic scene integration. 
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Gamers also demonstrated greater local efficiency in the right supramarginal gyrus (p = 

0.047), a key node within the ventral attention network. This may reflect enhanced reorienting 

capacity, enabling more efficient shifts of attention to salient visual cues in dynamic 

environments such as action video games. 

In contrast, non-gamers exhibited significantly greater local efficiency in the left 

pallidum (p = 0.047), a basal ganglia structure implicated in regulating voluntary movement and 

motor inhibition. This finding suggests a greater reliance on response inhibition mechanisms 

among non-gamers, which may contribute to slower, more deliberative decision-making 

strategies characterized by increased uncertainty monitoring. 

4.2.4.2 Node Degree Differences 

Significant group differences were also observed in node degree, further elucidating the 

network-level reorganization associated with long-term gaming experience. Gamers exhibited 

higher node degree in several functionally relevant regions. These included the right inferior 

frontal gyrus triangularis (p = 0.015), a region central to executive control, unconscious 

perceptual priming, and information processing (Shi et al., 2022). Increased node degree here 

may reflect heightened readiness for rapid stimulus-response mapping and rule-based action 

selection. 

Gamers also showed a greater degree in the right insula (p = 0.017), a salience network 

hub responsible for integrating sensory inputs and modulating attentional and decision-making 

processes. Elevated node degree was also observed in two subregions of the anterior cingulate 

cortex (ACC). In the subgenual ACC (p = 0.028), this increase is linked to urgency and 
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affectively driven decisions, while in the pregenual ACC (p = 0.032), it reflects involvement in 

conflict monitoring and the adjustment of cognitive strategies in response to prediction errors. 

Together, these findings suggest that gamers leverage a more dynamically responsive network 

configuration that emphasizes anticipatory control and efficient adaptation to environmental 

demands. 

In contrast, non-gamers exhibited higher node degree in regions associated with object-

in-place cognitive mapping and feedback-driven motor regulation. Specifically, the left 

hippocampus (p = 0.047), a key structure for spatial memory and contextual mapping, showed 

greater centrality, indicating a strategy that relies more heavily on object-based spatial reasoning. 

Additionally, increased node degree was observed in the left cerebellar lobule 3 (p = 0.009), 

which is involved in motor feedback correction. This suggests that non-gamers depend more on 

feedback-driven motor adjustments, potentially resulting in slower response execution due to 

ongoing corrective processes rather than optimized feedforward planning. 

4.2.4.3 SC-FC Local Efficiency and Node Degree Correlations with Response Time 

Stronger SC-FC local efficiency and node degree in visual and attentional regions were 

significantly associated with faster response times (RT), supporting their role in efficient 

visuomotor processing as shown in Figure 4.4b.  

Higher SC-FC local efficiency in the left superior occipital cortex (r = –0.38, p = 0.016) 

was associated with enhanced early visual processing, likely facilitating more efficient motion 

cue extraction and rapid response execution. Higher SC-FC node degree in the right insula (r = –

0.32, p = 0.047), which was also significantly elevated in gamers (p = 0.017), was associated 
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with faster response times. This aligns with the insula’s role in salience detection and adaptive 

attentional control, supporting the enhanced decision speed observed in gamers. 

Conversely, stronger SC-FC node degree in early visual and feedback-driven motor 

regions was associated with slower response times, suggesting that an over-reliance on early-

stage perceptual processing or corrective motor feedback may introduce inefficiencies. 

Specifically, higher node degree in the left superior occipital cortex (r = 0.38, p = 0.019) may 

reflect diffused or redundant spatial information processing that burdens downstream decision 

mechanisms. Similarly, increased node degree in the left cerebellar lobule 3 (r = 0.32, p = 

0.044), which was significantly higher in non-gamers (p = 0.009), likely indicates greater 

reliance on feedback-based motor corrections, potentially delaying response execution due to 

slower, corrective adjustments during deliberation. 

Taken together, these findings align with the CRR hypothesis by demonstrating that more 

efficient SC-FC integration in gamers supports a shift toward feedforward-dominant processing. 

This would enable more rapid visuomotor decisions based on salient visual cues. In contrast, 

non-gamers appear to rely more heavily on slower, feedback-dependent strategies, which impose 

greater cognitive load and contribute to delayed motor responses. 

4.2.5 SC-dFC Local Efficiency and Node Degree Differences 

SC-dFC is inherently asymmetric, meaning that a connection from source A to target B 

does not imply the same or a similar connection from B to A. This asymmetry results in dFC 

networks exhibiting greater variability and a sparser structure compared to FC networks. 

To address this sparsity, we applied a 10% threshold to binarize the SC-dFC network, 

retaining only the top 10% of the strongest and most reliable directed interactions. This threshold 
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minimized the influence of invalid or spurious connections, while preserving as many effective 

connections as possible. By doing so, we ensured that the global density of the SC-dFC network 

remained comparable to that of the SC-FC network within the same participant. This 

thresholding strategy aligned with our goal of maintaining as many meaningful connections as 

possible for an accurate characterization of the SC-dFC network while excluding invalid and 

spurious ones.  

As with earlier sections, the following interpretations are grounded in canonical neural 

anatomy and physiology of the involved brain regions, with references provided where 

functional roles are less well established in the literature. 

4.2.5.1 SC-dFC  Local Efficiency Differences 

Gamers demonstrated significantly greater SC-dFC local efficiency in two regions. First, 

the right middle occipital gyrus (p = 0.026), a region involved in motion perception and spatial 

processing, exhibited enhanced efficiency. This region likely serves as a transitional node linking 

early-stage visual areas, such as the superior occipital and calcarine cortices, to higher-order 

visuomotor networks. Greater local efficiency in this region suggests more effective directional 

information transfer, potentially enabling faster, low-latency visual processing of spatial 

information that is advantageous for rapid response execution (Renier et al., 2010). Second, 

gamers also showed increased local efficiency in the left precentral gyrus (p = 0.044), a primary 

motor area. This enhancement indicates improved sensorimotor coupling, allowing for more 

direct and efficient communication between visual input and motor output pathways. 

In contrast, non-gamers exhibited significantly greater SC-dFC local efficiency in two 

different regions. The left pallidum (p = 0.034), a basal ganglia structure critical for 
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proprioception and habitual motor actions, showed higher efficiency, suggesting a greater 

reliance on pre-learned or routine motor responses rather than executive planning. Additionally, 

the vermis 4,5 (p = 0.047), part of the cerebellum involved in error correction and feedback-

driven motor coordination, also exhibited greater efficiency in non-gamers. This pattern implies 

a heavier dependence on corrective strategies, which may introduce temporal delays in response 

execution during time-sensitive tasks. 

4.2.5.2  SC-dFC Node Degree Differences 

Examining SC-dFC node degree revealed that gamers exhibited significantly higher 

connectivity in several regions associated with executive control and adaptive decision-making. 

The left anterior cingulate cortex pregenual (p = 0.008), known for its role in performance 

monitoring and adaptive control, showed enhanced node degree, suggesting greater integration 

of cognitive control mechanisms to support rapid response selection. The right insula (p = 

0.018), a core node of the salience network, also displayed increased connectivity, reinforcing 

the idea that gamers are more adept at optimizing sensory-cognitive interactions for stimulus-

driven decision-making. 

Additional regions showing increased node degree in gamers included the right rectus 

gyrus (p = 0.026), thought to contribute to motivational behavior and reward-based decision-

making (Rolls, 2021; Rudebeck & Rich, 2018), and the left superior medial frontal gyrus (p = 

0.027), which is associated with higher-order motor planning and strategic control. Furthermore, 

the right inferior frontal gyrus, both opercular (p = 0.027) and triangular (p = 0.047) parts, 

showed elevated node degree, pointing to more effective executive suppression of irrelevant 

signals and potentially enhanced unconscious priming. Finally, the left posterior orbital cortex  
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(p = 0.045), involved in response evaluation and strategic adjustment, also demonstrated 

increased connectivity in gamers. 

In contrast, non-gamers showed significantly higher node degree in regions associated 

with memory-guided and feedback-driven motor processing. These included the left 

hippocampus (p = 0.031), implicated in spatial memory and object-in-place mapping, and the left 

cerebellum lobule 3 (p = 0.013), which plays a role in corrective motor control. These patterns 

suggest that non-gamers rely more on feedback-dependent and memory-guided decision-making 

strategies rather than streamlined, stimulus-response circuits. 

Collectively, these results support the notion that gamers exhibit more feedforward-

driven visuomotor integration and executive control, enabling rapid response selection without 

the need for extensive uncertainty reduction. This is evidenced by greater SC-dFC local 

efficiency in key visual and motor integration areas, as well as increased node degree in salience 

and control-related regions. In contrast, non-gamers appear to rely more on habitual, feedback-

corrective strategies involving memory and cerebellar coordination, which may introduce delays 

in rapid decision-making contexts. 

4.2.5.3 SC-dFC Efficiency and Node Degree Correlations with Response Times 

Spearman correlations revealed that enhanced SC-dFC local efficiency in several regions 

was significantly associated with faster response times. Notably, efficiency in the left superior 

occipital cortex (r = -0.48, p = 0.002) supported enhanced early-stage visual processing and 

motion cue extraction, while the left supplementary motor area (r = -0.45, p = 0.005) contributed 

to motor planning and rapid visuomotor responses. The left parahippocampal gyrus (r = -0.43, p 
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= 0.006), known for scene-based spatial memory, and the left supramarginal gyrus  (r = -0.40, p 

= 0.013), involved in sensorimotor integration and attentional shifts, were also significantly 

correlated with response speed. Additionally, the left superior temporal pole (r = -0.39, p = 

0.016), thought to serve as a hub for perceptual integration (Herlin et al., 2021), and the left 

amygdala (r = -0.39, p = 0.016), involved in emotional salience processing, both showed 

significant negative correlations with response time. Finally, local efficiency in the left rectus (r 

= -0.34, p = 0.036) was associated with faster response times, consistent with its role in 

motivational orientation and goal-directed behavior (Rolls, 2021; Rudebeck & Rich, 2018). 

In terms of node degree, several regions demonstrated significant associations with faster 

response times. These included the left insula (r = –0.51, p = 0.001), a salience network hub that 

integrates sensory and interoceptive inputs and also showed significantly greater node degree in 

gamers (p = 0.017); the left posterior orbital cortex (r = –0.37, p = 0.018), involved in adaptive 

decision-making and similarly elevated in gamers (p = 0.045); and the left anterior cingulate 

cortex pregenual (r = –0.33, p = 0.045), which supports performance monitoring and adaptive 

control and was also higher in gamers (p = 0.008). The right postcentral gyrus (r = –0.32, p = 

0.048), associated with sensorimotor integration and proprioception, also showed a significant 

behavioral correlation, although this region did not show a group difference in node degree. 

Interestingly, a higher node degree in the left superior occipital gyrus was associated with 

slower response times (r = 0.32, p = 0.048), suggesting a potential tradeoff in information 

distribution. From the perspective of CRR, this may reflect a diffusion of vital visual information 

of object trajectory across multiple processing routes, analogous to current splitting in a parallel 

electrical circuit, which may slow decision-making. 
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Altogether, these findings underscore the role of enhanced SC-dFC efficiency and node 

degree in visuomotor and executive regions as contributors to faster response execution in 

gamers. Enhanced efficiency in early visual and sensorimotor regions, along with greater 

connectivity in salience and control hubs, appears to facilitate rapid stimulus-response 

transformations. These results align with the CRR hypothesis, suggesting that gamers optimize 

directional communication along more effective pathways, which would minimizing reliance on 

cerebellar feedback loops and reducing response latency. In contrast, non-gamers’ greater 

reliance on memory and feedback-driven control systems may underlie slower, more deliberative 

response strategies. 

4.2.6 Integration with Prior Research 

This section builds on prior research into video game-induced neuroplasticity by further 

contextualizing previously reported findings from this dataset and demonstrating how 

structurally constrained functional and directed connectivity changes contribute to enhanced 

visuomotor decision-making response time (RT) ( Jordan &  Dhamala, 2022a; Jordan & 

Dhamala, 2022b; Jordan, 2021). Several key regions previously identified as critical for video 

game-related neural enhancements reappear in the current analysis, particularly in the domains of 

visuomotor processing and attentional coordination. 

One notable example is the right lingual gyrus, which in earlier work showed significant 

group differences in BOLD activation between gamers and non-gamers. In the present analysis, 

this region exhibited stronger SC-FC connectivity with the cerebellum (r = –0.38, p = 0.016), a 

relationship that also correlated with faster RT. This finding reinforces the lingual gyrus’s role in 

supporting rapid visual-motor transformations (Jordan & Dhamala, 2022b). 
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Additionally, improvements in connectivity between the dorsal attention network (DAN) 

and the salience network (SN) were observed in gamers, surviving Bonferroni correction (p < 

0.05). These enhancements suggest more efficient attentional coordination and flexible network 

switching, likely enabling gamers to focus more effectively on task-relevant stimuli (Jordan & 

Dhamala, 2022a). Expanding on these results, the current findings indicate that gamers differ 

from non-gamers not only in top-down DAN→SN attention allocation but also in how they 

process motion information. Specifically, the data support the idea that, through long-term 

engagement with action video games, cognitive resources are gradually reallocated toward more 

optimized neural pathways that incorporate scene-specific visual information, particularly 

relative motion cues, which in turn improve RT during visuomotor decision-making tasks. 

A central region in this dynamic is the supracallosal (dorsal) anterior cingulate cortex 

(ACC), a key node within the salience network involved in top-down attention and internal 

conflict monitoring between competing motor plans. In the current study, gamers exhibited 

significantly higher SC-dFC node degree in both the subgenual (p = 0.028) and pregenual (p = 

0.008) ACC, suggesting greater centrality in circuits involved in urgency signaling, adaptive 

control, and performance monitoring. Notably, node degree in the left pregenual ACC was also 

correlated with faster RT (r = –0.33, p = 0.045), consistent with its role in resolving action 

conflicts under pressure and optimizing behavioral responses. 

Although the subgenual ACC did not correlate with RT, its elevated connectivity likely 

reflects affective modulation, heightening motivational salience and time-sensitive urgency 

signaling to the suprarcallosal ACC. These two regions appear to work in tandem, with the 

subgenual ACC driving arousal and the supracallosal ACC coordinating rapid executive 
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responses. Supporting this view, stronger directed connectivity from the right subgenual to right 

supracallosal ACC was significantly associated with faster RT (r = –0.51, p = 0.0009), 

suggesting that a streamlined affective-to-executive signaling pathway is a strong indicator of 

decision-making RT. 

Additional SC-dFC connections involving pregenual and supracallosal ACC regions also tracked 

with faster RT. These included connections from the right pregenual ACC to the left pregenual 

ACC (r = –0.33, p = 0.036), from the left pregenual ACC to the right supracallosal ACC (r = –

0.38, p = 0.0169), and from the right pregenual ACC to the right supracallosal ACC (r = –0.33, p 

= 0.038).  

Our results from this chapter also reinforce earlier findings from Chapter 3, which 

showed that functional connectivity in the left dorsal stream is enhanced in gamers (Holm-

Bonferroni corrected, p < 0.05), with a significant correlation to faster response times (r = –0.41; 

Holm-Bonferroni corrected, p < 0.05). Specifically, gamers exhibited increased FC in the left 

superior occipital gyrus (L SOG) and superior parietal lobule (L SPL), core dorsal stream regions 

essential for visuomotor integration. In this chapter, faster response times were significantly 

associated with higher local efficiency in both SC-FC (r = –0.38, p = 0.016) and SC-dFC (r = –

0.48, p = 0.002) within the left superior occipital gyrus (L SOG), supporting the interpretation 

that enhanced dorsal stream function in gamers facilitates more efficient trajectory estimation 

and visuomotor integration. 

Interestingly, however, greater SC-FC node degree in the L SOG had a positive 

correlation with RT (r = 0.38, p = 0.019), suggesting that excessive reliance on early-stage visual 
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processing may lead to a less efficient visuomotor strategy—analogous to splitting current across 

too many paths in a parallel circuit. 

Collectively, these findings lend further support to the CRR hypothesis, which posits that 

long-term action video game experience drives a reallocation of cognitive resources toward more 

efficient visuomotor decision-making circuits. By reinforcing salience detection and motion 

tracking systems, AVG experience would enable rapid, accurate responses in high-pressure 

environments. These results underscore the potential role of adaptive neural processing and 

network refinements as key mechanisms that underlie AVG-induced neuroplasticity. 

4.2.7 Evaluation of the CRR Hypothesis 

The goal of this chapter was to formally evaluate the Cognitive Resource Reallocation 

(CRR) hypothesis as a mechanistic explanation for the enhanced visuomotor decision-making 

observed in long-term action video game (AVG) players. CRR posits that sustained AVG 

engagement gradually reallocates cognitive resources toward more efficient, feedforward 

visuomotor pathways, favoring circuits that support rapid, goal-directed responses over slower, 

deliberative feedback loops. This reallocation is expected to manifest as anatomically plausible 

changes in both the structure and dynamics of neural networks, supporting more efficient 

visuomotor decision making through enhancements in visual processing, visuomotor integration, 

attentional control, and cognitive flexibility. To test this hypothesis, this section focuses on 

group-level differences that also showed significant correlations with response time (RT). These 

findings represent the most direct evidence with which to evaluate CRR as a candidate 

explanation of the behavioral advantage observed in gamers.  
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We observed group-level differences in SC-FC and SC-dFC that tracked with RT. For 

example, non-gamers exhibited stronger SC-FC between the left middle temporal gyrus and left 

inferior temporal gyrus (p = 0.002), a connection positively correlated with slower RTs (r = 0.36, 

p = 0.025). This suggests a decision-making strategy weighted toward detailed object 

recognition, potentially increasing stimulus evaluation time. By contrast, gamers showed 

stronger SC-dFC from the left parahippocampal gyrus to the left superior temporal pole (p = 

0.034), a connection negatively correlated with RT (r = –0.36, p = 0.022). This pathway likely 

facilitates more efficient integration of scene-specific contextual information and relative 

motion, aligning with a context-driven decision-making strategy. 

This interpretation is supported by greater SC-dFC local efficiency in both the left 

superior temporal pole (p = 0.029, r = –0.33) and the left parahippocampus (p = 0.033, r = –

0.34), indicating more efficient local integration of scene-relevant information in gamers. While 

efficiency in these regions did not differ between groups, the fact that gamers demonstrated 

stronger SC-dFC between them, coupled with the negative RT correlation, supports a shift 

toward optimized visuospatial processing of salient scene-specific cues. 

In contrast, non-gamers demonstrated stronger SC-dFC from the right insula to the right 

posterior orbitofrontal cortex (OFC) (p = 0.043), a connection positively correlated with RT (r = 

0.36, p = 0.025), tracking with slower response times. The right insula is involved in 

interoception and uncertainty monitoring, while the posterior OFC supports outcome evaluation 

and decision inhibition. Stronger SC-dFC signaling from the right insula to the right posterior 

OFC likely reflects a heightened emphasis on internal deliberation and iterative uncertainty 
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reduction in non-gamers, amplifying the speed-accuracy tradeoff by promoting accuracy at the 

cost of RT. 

In line with this interpretation, gamers exhibited significantly higher SC-FC node degree 

in the right insula (p = 0.017), which was associated with faster RT, as indicated by its negative 

correlation (r = –0.32, p = 0.047).  While both groups appear to engage the right insula during 

visuomotor decision-making, gamers were shown to benefit more from its involvement due to 

greater network centrality, amplifying its role in rapid salience detection and adaptive 

interoceptive control. From this evidence, it is clear that gamers tend to leverage right insular 

engagement more effectively by tending to establish it as more central to the decision-making 

process to interoceptively monitor more regions, tending to devote less resources to support a 

directed connection to the posterior OFC, while non-gamers tend to recruit the right insula in 

such a way that aligns more closely with canonical speed-accuracy tradeoffs. 

SC-FC and SC-dFC node degrees also revealed consistent enhancements in gamers. SC-

FC node-degree of the left cerebellum lobule 3 tended to be greater in non-gamers (p = 0.009), 

and correlated with slower RTs (r = 0.32, p = 0.044), indicative of a more feedback-dependent 

motor correction strategy, once again aligning with a canonical speed-accuracy tradeoff. In 

contrast, the pregenual ACC had a higher SC-dFC node degree in gamers (p = 0.008) and was 

significantly correlated with faster RTs (r = –0.33, p = 0.045), suggesting a role in top-down 

attentional control and more effective resolution of internal conflict regarding competing motor 

plans.  

Higher local efficiency in the left superior occipital gyrus (SOG) was associated with 

faster response times in both SC-FC (r = –0.38, p = 0.016) and SC-dFC (r = –0.48, p = 0.002). 



                                                                                                                                                         

119 

Although no group differences were observed in SOG efficiency, these results reinforce the 

dorsal stream’s critical role in visuomotor integration, particularly during the sensory 

accumulation phase of decision-making, where object motion and trajectory must be rapidly 

estimated and an imminent motor response is required. As shown in Section 3.1.2, this system is 

functionally enhanced in gamers, underscoring the dorsal stream’s contribution to more efficient 

visuomotor decision-making. 

Taken together, the evidence from this study rejects the null hypothesis that CRR is not a 

plausible explanatory principle for the visuomotor decision-making advantage observed in 

gamers. Across SC-FC and SC-dFC modalities, local network properties, and response time 

correlations, we observed converging evidence that long-term AVG engagement reflects a 

reallocation of cognitive resources, which would induce neuroplastic refinements that support a 

more effective visuomotor decision-making strategy. Notably, no contradictions were observed 

within this dataset, providing unilateral support for CRR as a viable mechanistic account of 

experience-driven neuroplastic refinement associated with enhanced visuomotor decision-

making in the context of AVG experience. 

While CRR was found to be strongly supported as a plausible mechanistic explanation 

for enhanced visuomotor performance in gamers, it is important to consider what kinds of 

findings would have contradicted the hypothesis. CRR would be challenged if non-gamers 

showed stronger connectivity or network properties in task-relevant circuits that also predicted 

faster response times, especially if such markers were absent or weaker in gamers. It would also 

raise concerns if neural enhancements in gamers were limited to only part of the visuomotor 

decision process, while non-gamers showed stronger tuning in other equally relevant 
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components. Another challenge to CRR would come from evidence that pre-existing individual 

differences, such as globally more efficient networks unrelated to task relevance, predisposed 

individuals both to faster performance and a higher likelihood of gaming. This would suggest a 

selection effect rather than a plasticity-driven process. Similarly, if non-gamers showed stronger 

brain–behavior correlations in task-relevant areas than gamers, that too would challenge CRR. 

However, none of these patterns were observed. Instead, we found consistent adaptations in 

gamers across task-relevant networks that closely track behavioral performance. These findings 

support cognitive resource reallocation as the mechanism underlying the observed neuroplastic 

changes. 

4.2.8 Concluding Remarks 

This study investigates how long-term action video game play could induce neuroplastic 

refinements that enhance visuomotor decision-making and its supporting cognitive functions. 

While prior research has established that gamers exhibit faster response times and cognitive 

benefits, the specific neural mechanisms underlying these improvements have remained unclear.  

Our findings unilaterally support Cognitive Resource Reallocation (CRR) as the 

underlying principle governing gaming-related neuroplasticity, with no contradictions observed 

across any facet of our results. This shift reflects a transition from feedback-driven motor 

correction to anticipatory, feedforward processing, optimizing response efficiency and enhancing 

relative motion tracking between targets and distractors. These improvements are supported by 

strengthened connectivity in circuits involved in visual processing, visuomotor integration, 

attentional control, and cognitive flexibility, resulting in a more streamlined neural architecture 

for action selection in dynamic environments. 
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 This conclusion, evidenced by SC-FC and SC-dFC connectivity analyses, graph-

theoretic metrics, and behavioral correlations with response time, is consistent with CRR’s 

mechanistic account of how cognitive resources are selectively reallocated to task-relevant 

pathways. This reallocation leads to measurable behavioral advantages, including an average 

improvement of approximately 190 milliseconds in response time among gamers. By supporting 

CRR as a plausible explanatory framework for experience-dependent neuroplasticity, this work 

advances our understanding of how intense visuomotor engagement refines brain networks to 

support rapid, adaptive decision-making in fast-paced, graphically rich environments such as 

AVGs. 
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5 WHOLE BRAIN ANALYSIS: PCA-BASED ROI SELECTION 

This chapter addresses the challenge of understanding large-scale neuroplasticity in the 

context of long-term action video game (AVG) play using multimodal neuroimaging data. The 

overarching goal of this analysis is to investigate how AVG experience shapes structural (SC), 

functional (FC), and directed (dFC) connectivity, as well as region-specific structure–function 

coupling, both undirected (SFC) and directed (SdFC sender), as described in Section 2.2.4.5. 

However, whole-brain connectivity matrices derived from these modalities are extremely high-

dimensional relative to the sample size, making exploratory analyses difficult without a 

principled strategy for dimensionality reduction. 

By the time this analysis was conducted, Cognitive Resource Reallocation (CRR) had 

already received strong empirical support from the tractography-constrained findings presented 

in Chapter 4. While tractography offers a powerful means of reconstructing white matter 

pathways, it remains an indirect, model-based estimate of anatomical connectivity, subject to 

algorithmic limitations such as minimum streamline length, angular threshold, and spatial 

resolution. As such, even though the tractography-constrained framework leverages biologically 

plausible reconstructions of white matter tracts using the AAL3 atlas, it may still miss fine-

grained or multi-synaptic interactions that support emergent coordination across distributed brain 

networks. Consequently, behaviorally relevant functional and directed connectivity may go 

undetected or be overlooked when filtered through these structural constraints. Furthermore, the 

tractography data itself had not been analyzed directly in Chapter 4, but was instead used as a 

structural mask to constrain the functional analysis. A more complete account of how CRR 

would refine neural pathways in gamers in response to prolonged AVG experience requires 
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examining structural and functional adaptations in parallel, as each modality may capture distinct 

yet complementary aspects of experience-dependent plasticity. 

Initial attempts to isolate meaningful whole-brain functional effects using conventional 

statistical thresholding (e.g., p < 0.05) without tractography constraints yielded an overwhelming 

number of results across AAL3’s 166 × 166 pairwise connections, with no principled way to 

distinguish signal from noise. The need to correct for multiple comparisons—27,390 pairwise 

tests in the case of dFC, and half as many for FC due to its undirected, symmetric structure 

across 166 regions (excluding self-connections), severely diminished statistical power.  

To address this, a complementary data-driven PCA-based approach was developed to 

sweep across the entire dataset and identify the strongest sources of inter-subject signal variance. 

If any meaningful adaptation was missed by the tractography-constrained analysis, this method 

would be well-positioned to detect it. In this way, data-driven and anatomically constrained 

frameworks work synergistically, with the former broadening discovery and improving statistical 

power and the latter anchoring findings in neurobiological plausibility. Unlike traditional PCA 

approaches that reduce time series or select top ROIs from early components, the region-

cumulative PCA (rcPCA) method utilizes cumulative variance-weighted contribution scores 

across all components, up to a defined cumulative explained variance threshold. This balances 

the goal of capturing meaningful inter-subject variation while excluding spurious components 

that reflect noise or isolated variance. 

An ICA-based approach to dimensionality reduction was initially considered, but rcPCA 

was ultimately developed as a more suitable alternative for this study’s goal of investigating how 

AVG experience shapes SC, FC, dFC, SFC, and SdFC sender profiles within a predefined 
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anatomical atlas such as AAL3. Independent Component Analysis (ICA) is a powerful tool for 

uncovering distributed functional networks via blind source separation, using higher-order 

statistics such as kurtosis or negentropy (Calhoun et al., 2001; 2009), and has yielded valuable 

insights into large-scale brain organization. While ICA excels at detecting latent sources and 

identifying network-level structure, it does not natively support anatomically localized, region-

level ranking. Techniques such as spatial template matching, dual regression, ICN labeling, and 

joint ICA each extend ICA’s utility with template matching aiding anatomical alignment, dual 

regression estimating subject-level component expression, ICN labeling providing network-level 

categorization, and joint ICA enabling multimodal data fusion. However, none of these 

approaches cleanly resolve the core challenge of identifying which anatomical regions within a 

predefined atlas like AAL3 contribute most meaningfully to inter-subject variability across 

connectivity modalities. 

By contrast, the variance-based rcPCA method retains direct anatomical interpretability 

by operating within a predefined atlas (AAL3) from the outset. It leverages variance, a 

foundational statistical measure, rather than more abstract higher-order moments, offering a 

conceptually transparent and analytically targeted approach tailored to the needs of this study. 

This makes rcPCA particularly well-suited to the goal of identifying high-variance regions that 

meaningfully contribute to individual differences, enabling focused, region-level statistical 

comparisons across structural, functional, and directed connectivity measures. 

To test CRR using a multimodal approach at the whole-brain level, we examined 

connectivity differences in high-variance ROIs identified using rcPCA in SC, FC, dFC, SFC, and 

SdFC sender modalities. This allowed us to ask which mechanistic shifts in information-rich 
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brain areas are most involved in the neural adaptations distinguishing action gamers from non-

gamers, and how these adaptations support enhanced visuomotor performance. 

Our primary hypothesis is that gamers, due to their long-term AVG experience, will 

reflect neuroplastic refinements that reduce visuomotor surprise in task-relevant pathways by 

increasing anticipatory feedforward processing and decreasing reliance on uncertainty-reducing 

feedback loops, patterns typically observed in canonical speed–accuracy tradeoffs (Drugowitsch 

et al., 2014; 2015) and consistent with CRR predictions. Visuomotor surprise, in this context, 

refers to unresolved prediction error (Friston, 2010), arising throughout all stages of a 

visuomotor decision from sensory accumulation to action execution, and is expected to be more 

effectively minimized through the refinement of efficient, task-relevant circuits. In the context of 

our modified moving-dots task, gamers are expected to adapt more effectively to either possible 

outcome of a 50/50 decision, reflecting enhanced cognitive flexibility and attentional control. 

Our secondary hypothesis is that rcPCA will reveal behaviorally relevant structure–

function couplings and connectivity patterns that further elucidate the ~190 ms response time 

advantage observed in gamers, complementing the tractography-constrained findings presented 

in Chapter 4. We expect these effects to align with CRR’s prediction that long-term AVG 

experience drives resource reallocation toward efficient visuomotor decision pathways and away 

from redundant or compensatory circuits, thereby refining the task-specific networks that support 

proficient AVG performance. 

Although we do not directly quantify visuomotor surprise, it is treated as a latent 

cognitive property inferred from features like feedforward transformation, motor readiness, and 

anticipatory connectivity. Gamers are expected to show stronger alignment in task-relevant brain 



                                                                                                                                                         

126 

regions between structural and functional signals (e.g., SFC, SdFC sender) and more selective 

engagement of task-relevant circuits. Non-gamers, by contrast, are expected to rely more heavily 

on early visual processing, broader compensatory feedback mechanisms, and less efficient 

transformations from perception to action. 

In summary, this chapter utilizes rcPCA as a data-driven tool for identifying consistent 

covarying patterns in multimodal neuroimaging data and for further evaluating CRR as a formal 

mechanism of experience-driven neuroplasticity associated with long-term AVG experience. The 

results are expected to extend and complement the findings presented in earlier sections. 

5.1 Results 

The rcPCA ROI selection strategy followed standard PCA-based practices (Jolliffe & 

Cadima, 2016; Lee et al., 2021) commonly used in neuroimaging studies (Lee et al., 2021; 

Mwangi et al., 2014), prioritizing high-loading features from each principal component 

(Kucukboyaci et al., 2014). Specifically, we selected the top 20 contributing ROIs per 

component to highlight regions that most strongly account for structured variance, while 

minimizing the inclusion of low-weight contributors across each modality, as described in 

Section 2.2.4.6. Figure 5.1 illustrates this selection for FC and dFC modalities, including sender, 

receiver, and total modes. This approach is consistent with established PCA interpretation 

practices, which emphasize the most dominant features from early components to enhance 

interpretability. 
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Figure 5.1 Top 20 PCA Selected ROIs from FC and dFC Explained Variance. Principal 

component analysis (PCA) was applied to undirected functional connectivity (FC) and 

directed functional connectivity (dFC), with dFC further decomposed into total, sender, and 

receiver modes. ROIs names taken from the AAL3 atlas were ranked by their contribution to 

across-subject variance, and the top 20 were selected based on a cumulative 80% explained 

variance threshold. (a) FC: undirected Pearson correlations. (b) dFC total: summed Granger 

causality across source and target roles. (c) dFC sender: variance from outgoing influences. 

(d) dFC receiver: variance from incoming influences. This decomposition highlights 

asymmetric functional dynamics and distinguishes ROIs involved in information 

transmission versus reception. 
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Validation of rcPCA-derived ROIs utilized a combination of rank correlation, 

permutation testing, and hypergeometric overlap statistics. Using a significance threshold of p < 

0.001, this approach confirmed that the observed alignments between PCA-derived ROI rankings 

and raw variance were statistically robust and unlikely to occur by chance. The full validation 

procedure is described in Section 2.2.4.7. For subsequent group-level comparisons, the Storey–

Tibshirani (ST) method was applied only to FC, where its assumptions held; all other modalities 

used the Benjamini–Hochberg (BH) procedure for FDR correction. Further details on modality-

specific correction rationale are provided in Section 2.2.4.8.  

5.1.1  Group Differences in Functional and Directed Connectivity 

5.1.1.1 Group Differences in Functional Connectivity 

Whole-brain FC analysis revealed significant group differences (p < 0.05) between 

gamers and non-gamers, concentrated in thalamic, cerebellar, midbrain, and temporal regions 

(Figure 5.2a). PCA-selected ROIs, validated in Figure 5.2b, showed robust effects following 

FDR correction. Gamers exhibited significantly stronger functional connectivity between the 

right red nucleus and the right pulvinar thalamic nucleus (p = 0.0061, q = 0.02, d = 0.85), and 

between left cerebellar lobule 3 and both the right superior temporal pole (p = 0.0014, q = 0.035, 

d = 1.12) and the left caudate nucleus (p = 0.00093, q = 0.03, d = 1.00). In contrast, non-gamers 

showed stronger connectivity between left cerebellar lobule 3 and the left intralaminar thalamic 

nuclei (p = 0.00085, q = 0.042, d = –1.26), the left substantia nigra pars reticulata (p = 0.002, q = 

0.042, d = –1.10), and both the right and left ventrolateral thalamic nuclei (p = 0.01, d = –0.76; p 

= 0.03, d = –0.87, respectively). These effects reflect consistent, large-magnitude differences in 

functional connectivity across subcortical–cerebellar circuits. Absolute effect sizes were 

consistently large, ranging from d = 0.76 to 1.26 across significant connections. Full statistical 
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results are organized in Table 5.1 and violin plot distributions illustrating these effects are shown 

in Figure 5.2c. 

Table 5.1 Group differences in functional connectivity between action video game players and 

non-gamers, derived from rcPCA-selected ROIs taken from the AAL3 atlas 

Functional Connectivity p-value q-value (ST) Cohen's d 

Red N R Thal Pul R 0.0061 0.02 0.85 

Cerebellum 3L Temporal Pole Sup R 0.0014 0.035 1.12 

Cerebellum 3L Caudate L 0.00093 0.03 1.00 

Cerebellum 3L Thal IL L 0.00085 0.042 -1.26 

Cerebellum 3L SN pr L 0.002 0.042 -1.10 

Cerebellum 3L Thal VL R 0.01 _ -0.76 

Cerebellum 3L Thal VL L 0.03 _ -0.87 
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Figure 5.2  Functional Connectivity Differences Involving Top PCA ROIs (a) Whole-

brain FC matrix showing significant group differences (p < 0.05, uncorrected), organized 

by anatomical region.(b) Validation of the PCA-based method involved (i) Spearman’s 

rank correlation (ρ) across top-n selections comparing PCA-weighted and raw variance-

based rankings; (ii) Comparison of statistical sensitivity using Spearman correlation, 

hypergeometric overlap p-values, and permutation-derived p-values between PCA- and 

raw-ranked ROIs; (iii) Overlap between PCA- and raw-ranked ROIs increases 

systematically with top-n selections; (iv) PCA-selected ROI overlap exceeds chance 

across 10,000 permutations. Region names are taken from the AAL3 atlas 
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5.1.1.2 Group Differences in Directed Functional Connectivity 

Directed connectivity analyses using Granger causality revealed significant differences in 

directed functional connectivity (dFC) between gamers and non-gamers across sender, receiver, 

and total modes (p < 0.05, uncorrected). These effects were concentrated in midbrain, thalamic, 

cerebellar, and anterior cingulate cortex (ACC) regions (Figure 5.3a–c). In sender mode, non-

gamers exhibited stronger directed influence from the left supracallosal ACC to the right 

ventrolateral thalamus (p = 0.0003, q = 0.042, d = –0.91), the only connection that survived false 

discovery rate (FDR) correction. Additional uncorrected differences included stronger non-

gamer outflow from the left ACC to the left cerebellar lobule 7b (p = 0.004, d = –0.65) and from 

the right ventral tegmental area (VTA) to both the right ventrolateral thalamus (p = 0.006, d = –

0.96) and the left cerebellar lobule 3 (p = 0.012, d = –0.75). 

In receiver mode, non-gamers showed greater inflow to the left supracallosal ACC from 

the left cerebellar lobule 3 (p = 0.004, d = –1.00) and the right locus coeruleus (p = 0.031, d = –

0.83), while bilateral VTA and right thalamus also showed elevated input to the left cerebellum. 

Total mode effects reflected overlapping but distinct connectivity patterns, including stronger 

non-gamer influence from the left ACC to the right thalamus (p = 0.002, d = –0.98) and from the 

left cerebellar lobule 3 to the left ACC (p = 0.011, d = –0.87). 

Effect size magnitudes across modes ranged from d = 0.59 to 1.00, indicating robust 

directional asymmetries in dFC across groups. Full statistical results are reported in Table 5.2, 

and violin plots showing group distributions for these effects are provided in Figure 5.3. 
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Table 5.2 Group differences in directed connectivity (sender, receiver, and total modes) between 

action video game players and non-gamers, based on rcPCA-selected AAL3 ROIs 

Directed Connectivity (Sender) p-value q-value (BH) Cohen's d 

ACC sup L Thal VL R 0.0003 0.042 -0.91 

ACC sup L Cerebellum 7b L 0.004 _ -0.65 

VTA R Thal VL R 0.006 _ -0.96 

VTA R Cerebellum 3L 0.012 _ -0.75 

Directed Connectivity (Receiver) p-value q-value (BH) Cohen's d 

Cerebellum 3L ACC sup L 0.004 _ -1.00 

LC R ACC sup L 0.031 _ -0.83 

VTA L Cerebellum 3L 0.0008 _ -0.91 

VTA R Cerebellum 3L 0.008 _ -0.75 

Thal VL R Cerebellum 3L 0.029 _ -0.61 

Directed Connectivity (Total) p-value q-value (BH) Cohen's d 

ACC sup L Thal VL R 0.002 _ -0.98 

Cerebellum 3L ACC sup L 0.011 _ -0.87 

Red N R SN pc R 0.024 _ -0.79 

Thal LP R Cerebellum 3L 0.038 _ -0.59 
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Figure 5.3 Directed connectivity differences involving top PCA ROIs. Group-level 

differences in directed functional connectivity (dFC) between gamers and non-gamers based 

on PCA-derived regions of interest. Each panel displays the dFC matrix of significant group 

differences (p < 0.05), selection stability validation, and violin plots highlighting the 

strongest effects. Panel (a) shows sender-mode results reflecting group differences in 

outgoing influence, including a connection from the left superior anterior cingulate cortex to 

the right ventrolateral thalamus that survived FDR correction (q < 0.05), alongside 

uncorrected effects from the right ventral tegmental area to cerebellar and thalamic targets. 

Panel (b) presents receiver-mode results indicating group differences in incoming influence, 

with effects observed in the left cerebellar lobule 3 (from the right VTA and right 

ventrolateral thalamus) and the left superior anterior cingulate cortex (from the right locus 

coeruleus). Panel (c) shows total influence results, combining sender and receiver roles, with 

significant effects involving the left superior anterior cingulate cortex, the right substantia 

nigra pars compacta, and the left cerebellar lobule 3. 
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5.1.2 Extensions of PCA-Based ROI Selection Beyond Functional Connectivity 

5.1.2.1 Group Differences in Structural Connectivity 

Structural connectivity (SC) analysis using diffusion measures, fractional anisotropy 

(FA), axial diffusivity (AD), isotropy (ISO), and non-restricted diffusion imaging (NDRI) 

described in Table 2.3 revealed significant group-level differences between gamers and non-

gamers involving rcPCA-derived ROIs (p < 0.05), as shown in Figure 5.4. For FA, reduced 

connectivity in non-gamers was observed between the left calcarine cortex and the left superior 

occipital gyrus (p = 0.036, d = –0.78), a connection also associated with slower response times in 

behavioral analysis (see Figure 5.6). 

In the AD measure, a robust group difference emerged between the left superior medial 

frontal gyrus and the left middle cingulate cortex (p = 0.0003, q = 0.047, d = 1.16), the only FA 

or AD comparison to survive FDR correction. ISO-based analyses revealed stronger connectivity 

in gamers between the left lingual gyrus and the left caudate (p = 0.0002, q = 0.026, d = 1.22) 

and between the right lingual gyrus and the left cerebellar lobule 6 (p = 0.0007, q = 0.047, d = 

0.96). These region pairs also showed significant differences in the NDRI measure, with both 

comparisons maintaining significance following FDR correction. 

Absolute effect sizes across all measures were consistently large, with d values ranging 

from 0.78 to 1.22. These findings underscore robust SC differences within posterior cortical and 

subcortical circuits relevant to visuomotor integration. Full statistical results, including all p-

values, FDR-adjusted q-values, and Cohen’s d effect sizes, are presented in Table 5.3. Violin 

plots visualizing these effects are shown in Figure 5.4. 
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Table 5.3 Group differences in structural connectivity measures (FA, AD, ISO, NDRI) between 

action video game players and non-gamers based on rcPCA-selected AAL3 ROIs 

Fractional Anisotropy (FA) p-value q-value (BH) Cohen's d 

Calcarine L Occipital Sup L 0.036 _ -0.78 

Axial Diffusivity (AD) p-value q-value (BH) Cohen's d 

Frontal Sup Medial L Cingulate Mid L 0.0003 0.047 1.16 

Isotropy (ISO) p-value q-value (BH) Cohen's d 

Lingual L Caudate L 0.0002 0.026 1.22 

Lingual R Cerebellum 6 L 0.0007 0.047 0.96 

None-Restricted Diffusion (NDRI) p-value q-value (BH) Cohen's d 

Lingual L Caudate L 0.00008 0.037 0.97 

Lingual R Cerebellum 6 L 0.0007 0.047 0.87 
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 Figure 5.4 Structural connectivity differences filtered by top PCA ROIs Group-level 

structural connectivity (SC) differences between gamers and non-gamers across four 

diffusion MRI measures, limited to regions of interest (ROIs) identified through PCA-

based selection from the AAL3 atlas. Each panel presents the SC matrix of significant 

group differences (p < 0.05), validation of selection stability, and violin plots 

highlighting the strongest effects. Panel (a) shows uncorrected differences in fractional 

anisotropy (FA) between the left calcarine cortex and the left superior occipital gyrus. 

Panel (b) displays axial diffusivity (AD) differences involving the left superior medial 

frontal gyrus and the left mid-cingulate cortex. Panel (c) illustrates isotropy (ISO) 

differences in connections between the lingual gyrus and cerebellar lobule 6. Panel (d) 

shows corresponding differences in non-restricted diffusion imaging (NRDI) across the 

same regions. 
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5.1.2.2 Group Differences in Structure–Function Coupling 

Structure-function coupling measures the alignment between a region's structural 

connectivity measure and its corresponding capacity for functional load (Fotiadis et al., 2024). 

To quantify this relationship, Pearson correlations were computed between structural 

connectivity (SC) and both functional connectivity (FC) and directed functional connectivity 

(dFC sender mode). The undirected correlation with FC is referred to as SFC, while the 

correlation with sender-mode dFC is termed SdFC (sender). In the SFC condition, gamers 

exhibited significantly stronger coupling in the cerebellum. These included Vermis 3 with mean 

diffusivity (p = 0.046, d = 0.64), Vermis 9 with both mean length (p = 0.024, d = 0.64) and 

fractional anisotropy (p = 0.049, d = 0.55), and Cerebellum 10L with fractional anisotropy (p = 

0.046, d = 0.65) and quantitative anisotropy (p = 0.049, d = 0.65). 

In the SdFC sender condition, non-gamers showed significantly stronger coupling in 

Vermis 7 across multiple measures, including axial diffusivity (p = 0.002, q = 0.048, d = –1.00), 

isotropy (p = 0.004, d = –0.97), and restricted diffusion (p = 0.004, d = –0.97). Additional effects 

favoring non-gamers were found in the right calcarine cortex for count (p = 0.038, d = –0.74), 

ncount (p = 0.015, d = –0.82), and ncount2 (p = 0.023, d = –0.82), as well as in the left calcarine 

cortex (p = 0.043, d = –0.59). 

Gamers, in contrast, exhibited stronger SdFC sender coupling in the left supracallosal 

anterior cingulate cortex for both ncount (p = 0.020, d = 0.82) and ncount2 (p = 0.021, d = 0.83), 

in the left medial orbitofrontal cortex for count (p = 0.032, d = 0.74), and in the right paracentral 

lobule for ncount (p = 0.028, d = –0.67). 
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Effect size magnitudes were moderate to large across both coupling modes, with d values 

ranging from 0.55 to 1.00. The Vermis 7–axial diffusivity pair was the only comparison to 

survive FDR correction. These findings highlight distinct structure–function coupling profiles 

between groups, particularly in cerebellar and occipital regions. Full statistical results are 

provided in Table 5.4, and violin plots illustrating these effects are shown in Figure 5.5. 

Table 5.4 Group differences in structure–function coupling (SFC and sender dFC modes) 

between action video game players and non-gamers based on rcPCA-selected AAL3 ROIs 

Coupling Region SC Measure p q d 

SFC 

Vermis 3 Mean Diffusivity (MD) 0.046 — 0.64 

Vermis 9 Mean Length 0.024 — 0.64 

Vermis 9 Fractional Anisotropy (FA) 0.049 — 0.55 

Cerebellum 10L Fractional Anisotropy (FA) 0.046 — 0.65 

Cerebellum 10L Quantitative Anisotropy (QA) 0.049 — 0.65 

SdFC 

(Sender) 

Vermis 7 Axial Diffusivity (AD) 0.002 0.048 -1.00 

Vermis 7 Isotropy (ISO) 0.004 — -0.97 

Vermis 7 Restricted Diffusion (RDI) 0.004 — -0.97 

Calcarine R count 0.038 — -0.74 

Calcarine R ncount 0.015 — -0.82 

Calcarine R ncount2 0.023 — -0.82 

Calcarine L count 0.043 — -0.59 

ACC sup L ncount 0.02 — 0.82 

ACC sup L ncount2 0.021 — 0.83 

Frontal Medial Orb L count 0.032 — 0.74 

Paracentral Lobule R ncount 0.028 — -0.67 
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Figure 5.5 SFC and SdFC (Sender) Coupling Differences Involving Top PCA ROIs. Group-

level differences in structure–function coupling strength between gamers and non-gamers, 

using rcPCA-derived ROI selections from the AAL3 atlas.(a) SFC coupling: Significant effects 

(p < 0.05) were observed across multiple structural measures—including mean diffusivity 

(MD), mean length, fractional anisotropy (FA), and quantitative anisotropy (QA)—involving 

Vermis 3, Vermis 9, and Cerebellum 10L. (b) SdFC (sender) coupling: Significant group 

differences emerged in Vermis 7 across intensive diffusion measures (AD, ISO, RDI), and in 

Calcarine cortex (bilaterally), ACC sup L, Frontal Med Orb L, and Paracentral Lobule R across 

extensive measures (count, ncount, ncount2). ROI selection and validation followed the same 

rcPCA-based procedure used in other connectivity modalities. A significant FDR-corrected 

effect (q = 0.048) was observed in Vermis 7–AD SdFC sender coupling. 
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5.1.3 Brain–Behavior Relationships 

Response time was significantly associated with connectivity strength and structure–

function coupling across modalities. Faster responses were linked to negatively sloped Spearman 

correlations, while slower responses were associated with positively sloped trends. 

In functional connectivity, faster responses were linked to stronger connectivity between 

the right red nucleus and the right pulvinar thalamus (r = –0.41, p = 0.009), whereas slower 

responses were associated with increased connectivity in cerebellar and thalamic circuits, 

including the left cerebellar lobule 3 and the right substantia nigra pars compacta (r = 0.33, p = 

0.036), as well as the left ventrolateral thalamus and the left cerebellar lobule 3 (r = 0.33, p = 

0.037). 

In directed connectivity, slower responses were correlated with increased influence from 

the right ventral tegmental area to the left cerebellar lobule 3 (r = 0.41, p = 0.008), from the right 

substantia nigra pars compacta to the right red nucleus (r = 0.40, p = 0.003), and from the left 

supracallosal anterior cingulate cortex to the left cerebellar lobule 7b (r = 0.34, p = 0.032). 

Additional significant effects included connections from the right lateral posterior thalamus to 

the left cerebellar lobule 3 (r = 0.40, p = 0.009) and from the right locus coeruleus to the left 

supracallosal anterior cingulate cortex (r = 0.40, p = 0.010). 

In structural connectivity, slower responses were associated with higher fractional 

anisotropy between the left calcarine cortex and the left superior occipital gyrus (r = 0.35, p = 

0.020), while faster responses were linked to lower fractional anisotropy between the left 

parahippocampal gyrus and the left precuneus (r = –0.36, p = 0.011), and to lower quantitative 
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anisotropy between the left superior temporal pole and the left orbital part of the inferior frontal 

gyrus (r = –0.42, p = 0.005). 

In structure–function coupling, faster response times were associated with stronger 

coupling in the right mid-occipital cortex, including axial diffusivity (r = –0.31, p = 0.050) and 

non-restricted diffusion imaging (r = –0.32, p = 0.042). Stronger coupling in the right 

supracallosal anterior cingulate cortex was also associated with faster responses across multiple 

measures: axial diffusivity (r = –0.44, p = 0.006), fractional anisotropy (r = –0.44, p = 0.006), 

normalized quantitative anisotropy (r = –0.39, p = 0.015), and non-restricted diffusion imaging (r 

= –0.37, p = 0.020). In sender-mode coupling, faster responses were further linked to greater 

structure–function alignment from the right anterior cingulate cortex (e.g., FA: r = –0.44, p = 

0.006; NRDI: r = –0.37, p = 0.020; NQA: r = –0.39, p = 0.015), as well as from the left medial 

orbital frontal cortex (r = –0.34, p = 0.035) and the left calcarine cortex (r = –0.34, p = 0.032). 

All brain–behavior correlations  supporting these effects are organized in Table 5.5 and 

displayed in Figure 5.6. 
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Table 5.5 Significant Spearman correlations between multimodal brain connectivity measures, 

including functional, directed, structural, and structure–function coupling, and response time 

Modality Connection Measure r p 

Functional 

Connectivity 

Red N R –  Thal PuL R FC –0.41 0.009 

Cerebellum 3 L – SN pc R FC 0.33 0.036 

Thal VL L – Cerebellum 3 L FC 0.33 0.037 

Directed 

Connectivity 

VTA R → Cerebellum 3 L dFC 0.41 0.008 

VTA R → Thal VL R dFC 0.38 0.013 

ACC sup L → Cerebellum 7b L dFC 0.34 0.032 

LC R → ACC sup L dFC 0.40 0.01 

SN pc R –  Red N R dFC 0.40 0.003 

Thal LP R – Cerebellum 3 L dFC 0.40 0.009 

Structural 

Connectivity 

Calcarine L – Occipital Sup L FA 0.35 0.02 

Parahippocampal L – Precuneus L FA –0.36 0.011 

  Temporal pole sup L – Frontal Inf Orb 2 L AD –0.42 0.005 

Structure–

Function 

Coupling 

(Undirected) 

Occipital Mid R AD –0.31 0.05 

Occipital Mid R NRDI –0.32 0.042 

Structure–

Function 

Coupling 

(Sender) 

ACC sup R AD –0.44 0.006 

ACC sup R FA –0.44 0.006 

ACC sup R NQA –0.39 0.015 

ACC sup R NRDI –0.37 0.02 

Frontal medial orbital L Count –0.34 0.035 

Calcarine R NRDI   0.34 0.032 
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Figure 5.6 Brain–Behavior Correlations Across Connectivity Modalities. Connectivity 

strength and structure–function coupling among PCA-derived ROIs from the AAL3 atlas 

were significantly associated with response time. Negative correlations reflect faster 

performance. (a) In functional connectivity, faster responses were linked to stronger 

connectivity between the red nucleus and right pulvinar thalamus, while slower responses 

were associated with enhanced connectivity across midbrain–thalamic–cerebellar 

pathways.(b) In directed connectivity, slower responses corresponded to greater influence 

among midbrain (VTA R, SN pc R), thalamic (Thal VL R), cerebellar, and left 

supracallosal anterior cingulate regions.(c) In structural connectivity, slower responses 

were linked to higher FA between the left calcarine cortex and superior occipital gyrus, 

while faster responses were associated with reduced FA between the left parahippocampal 

and precuneus and decreased AD between the superior temporal pole and inferior frontal 

gyrus.(d) In structure–function coupling, stronger SC–FC and SC–dFC coupling in mid-

occipital, frontal, and anterior cingulate regions tracked with faster responses 
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5.2 Discussion of Findings and Interpretation 

5.2.1 A Novel PCA-Based Framework for Region Selection 

To address the challenges of navigating the complexity of full-brain connectivity 

matrices, we developed a novel PCA-based framework that reimagines the role of principal 

component analysis (PCA) in neuroimaging. Rather than relying on anatomical constraints or 

arbitrary statistical cutoffs, this method decomposes subject-by-connection matrices into 

orthogonal principal components and computes the eigenvalue-weighted sum of absolute 

contributions for the top user-defined regions across all components. The result is a global 

variance contribution score for each brain region, allowing us to prioritize the most informative 

regions for downstream group comparisons based on their contribution to explained variance. 

For our analysis, we selected the top 20 regions contributing up to 80% of the total explained 

variance, emphasizing the most relevant contributors for downstream analysis while ensuring 

stability, as detailed in Section 2.2.4.6. 

Crucially, this method leverages the mathematical structure of PCA(Mwangi et al., 2014; 

Wall, 2002) to form an orthonormal basis over the space of brain regions, enabling a principled 

and interpretable ranking of ROI importance. By weighting regional contributions according to 

the variance explained by each principal component, the method prioritizes dominant, structured 

inter-subject variance. This orthogonal decomposition avoids redundancy, permitting 

straightforward accumulation of variance-weighted contributions. 

Moreover, this region-centric approach flexibly handles both undirected and directed 

connectivity matrices. For directed measures, such as Granger causality, the method separately 

calculates contribution scores for the sender, receiver, and total contributions, allowing for a 

nuanced interpretation of directional asymmetries in brain networks. This increases the 
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interpretability and relevance of the selected ROIs. Altogether, this novel application of PCA 

provides a mathematically robust alternative to traditional thresholding and anatomical filtering, 

focusing on variance-based selection that generalizes across structural, functional, directed 

connectivity, and coupling modalities. 

To evaluate the internal consistency and robustness of our PCA-based ROI selection 

method, we developed a multi-pronged validation strategy using rank correlation, permutation 

testing, and hypergeometric overlap statistics with a conservative significance threshold of p < 

0.001 as our primary validation criteria. This strategy enabled a drastic reduction in the number 

of statistical comparisons required for downstream testing, significantly improving our ability to 

detect FDR-corrected (q < 0.05) results that would have been obscured by multiple comparison 

corrections. 

In the previous chapter, we applied a structurally constrained functional neuroimaging 

analysis, limiting connectivity assessments to anatomically plausible tracts informed by white 

matter tractography. While this approach enhanced biological plausibility, it was inherently 

limited by tractographic reconstruction and macro-level user-defined parameters such as 

allowable streamline length and angular thresholds. The PCA-based method introduced here 

offers a complementary perspective by identifying dominant, behaviorally relevant patterns of 

variance without relying on anatomical priors. By combining tractography-informed constraints 

to ensure biological plausibility with PCA-driven selection to surface robust inter-subject 

variability, we constructed a methodological framework capable of supporting a comprehensive 

and principled investigation of the neuroplastic adaptations associated with video game 

experience. 
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5.2.2 Group Differences Between Gamers and Non-Gamers Across Modalities 

Group-level comparisons between gamers and non-gamers revealed widespread 

differences across multiple connectivity domains, all of which involved at least one PCA-

identified region of interest (ROI). 

In functional connectivity (FC), shown in Figure 5.2, gamers exhibited significantly 

stronger FC between the right red nucleus and the right pulvinar thalamus, the left cerebellum 

lobule 3 and the left caudate nucleus, and the left cerebellum lobule 3 and the right superior 

temporal pole. In contrast, non-gamers showed stronger FC between the left cerebellum lobule 3 

and the left intralaminar thalamus, the left cerebellum lobule 3 and the left substantia nigra pars 

reticulata, and the left cerebellum lobule 3 and the ventrolateral thalamus bilaterally. All FC 

differences, except for the connections involving the ventrolateral thalamus, survived FDR 

correction. Several of these FC connections were also significantly correlated with response time 

(RT), indicating behavioral relevance. These patterns suggest that non-gamers may rely more 

heavily on feedback-based loops involving cerebellar–thalamic–midbrain circuits, potentially as 

a mechanism to reduce uncertainty during motor action selection. Effect sizes were consistently 

large, with Cohen’s d magnitudes ranging from 0.76 to 1.26. 

In directed functional connectivity (dFC), presented in Figure 5.3, sender-mode results 

revealed a robust group difference in directed influence from the left superior anterior cingulate 

cortex to the right ventrolateral thalamus, which survived FDR correction. Additional 

uncorrected differences favoring non-gamers included projections from the left superior anterior 

cingulate cortex to the left cerebellum lobule 7b, from the right ventral tegmental area to the 

right ventrolateral thalamus, and from the right ventral tegmental area to the left cerebellum 
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lobule 3. Notably, each of these connections also showed significant positive correlations with 

RT. 

Receiver-mode differences also favored non-gamers, with several directed connections 

showing stronger influence toward key target regions. These included projections from the left 

cerebellum lobule 3 to the left superior anterior cingulate cortex, from the right ventral tegmental 

area to the left cerebellum lobule 3, and from the right locus coeruleus to the left superior 

anterior cingulate cortex. Several of these connections also showed significant positive 

correlations with RT. Total-mode results closely mirrored the sender- and receiver-mode 

patterns, with notable unique group differences such as increased connectivity from the right red 

nucleus to the right substantia nigra pars compacta and from the left thalamus to the left 

cerebellum lobule 3 in non-gamers. 

The consistency of these effects across all directed functional connectivity (dFC) modes, 

coupled with moderate to large effect sizes (d = 0.59 to 1.00), reinforces the earlier findings from 

tractography-constrained analyses presented in Chapter 4, which revealed that non-gamers 

exhibit a greater number of directed connections. The current results build on that observation, 

suggesting that non-gamers engage in a broader, more distributed pattern of targeted information 

flowlikely reflecting compensatory network recruitment to signal the need for an imminent 

motor response during rapid visuomotor decision-making. 

In structural connectivity (SC) analysis using diffusion measures (FA, AD, ISO, and 

RDI), we observed group-level differences involving PCA-derived regions of interest (p < 0.05) 

as shown in  Figure 5.4. For FA, a notable and seemingly counterintuitive difference emerged 

that FA was significantly higher in non-gamers between the left calcarine cortex and the left 
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superior occipital gyrus—early visual areas (Huff et al., 2025), which also had a positive 

correlation with RT thus associated with slower response times in behavioral analysis (see Figure 

5.6). This finding suggests that non-gamers may over-rely on early-stage visual processing to 

compensate for inefficiencies further downstream. For AD, group differences emerged between 

the left superior medial frontal gyrus and the left mid-cingulate cortex (q < 0.05). ISO revealed 

significant effects in connections between the right lingual gyrus and the left cerebellum lobule 

6, as well as between the left lingual gyrus and the left caudate nucleus. Both connections 

remained significant in NRDI and under FDR correction. Absolute effect sizes across all SC 

measures were substantial, with Cohen’s d magnitudes ranging from 0.78 to 1.22, indicating 

consistently large group-level differences. 

Structure–function coupling findings displayed in Figure 5.5 provided further insight into 

group differences by measuring the alignment between a region’s structural connectivity profile 

and its capacity for functional load (Fotiadis et al., 2024). Gamers exhibited stronger structure–

function coupling (SFC) within cerebellar regions, including vermis lobule 3 (MD), vermis 

lobule 9 (mean length, FA), and the left cerebellum lobule 10 (FA, QA). In contrast, non-gamers 

showed stronger structure–directed functional coupling (SdFC sender) in bilateral calcarine 

cortices and vermis lobule 7. One of these connections, involving vermis lobule 7 and AD-based 

SdFC sender coupling, survived FDR correction. 

Gamers also demonstrated stronger SdFC sender coupling in key frontal and cingulate 

regions, including the left superior anterior cingulate cortex (ncount, ncount2), the left medial 

orbital frontal cortex (count), and the left paracentral lobule (ncount). These findings underscore 

a functional distinction between undirected synchrony, as measured by SFC, and directional 
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signaling capacity, as captured by SdFC sender. Stronger coupling in gamers may reflect more 

efficient transmission channels for dynamic signaling, consistent with prior evidence of 

increased dorsal attention to salience network (DAN-to-SN) switching and which the superior 

anterior cingulate cortex as a core node in the salience network (SN) (Jordan & Dhamala, 2022). 

5.2.3  Brain–Behavior Relationships 

Connectivity and coupling strengths across all modalities were significantly associated 

with response time (RT), as shown in Figure 5.6. These associations reinforce the behavioral 

relevance of group differences and suggest that the specific network configurations observed in 

gamers versus non-gamers reflect divergent visuomotor strategies. Non-gamers exhibited greater 

engagement in cerebellar–midbrain–thalamic circuits, which were consistently associated with 

slower responses and may indicate less efficient allocation of cognitive resources. 

5.2.3.1 Functional Connectivity 

Faster RTs, indicated by negative correlations, were linked to stronger functional 

connectivity (FC) between the right red nucleus and right pulvinar thalamus. In contrast, slower 

RTs were associated with stronger FC in cerebellar–thalamic and cerebellar–midbrain 

connections, particularly between the left cerebellum lobule 3 and the left intralaminar thalamus, 

left substantia nigra pars reticulata, and bilateral ventrolateral thalamus, connections that were 

more prominent in non-gamers. These patterns suggest that reliance on cerebellar–thalamic error 

correction signals (Ide & Li, 2011) slows visuomotor transformations by promoting tighter 

inhibitory control. This is evidenced by increased synchrony between the substantia nigra and 

ventrolateral thalamus in non-gamers (Walter & Shaikh, 2014), implying reduced motor 

readiness due to greater inhibitory gating of thalamic output. Such dynamics may delay 
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resolution of competing motor plans (Sonne, 2025), ultimately prolonging response times under 

conditions of uncertainty. 

5.2.3.2 Directed Functional Connectivity 

In addition to undirected connectivity patterns, directed functional connectivity (dFC) 

analyses revealed several behaviorally relevant group differences linked to response time. 

All three sender-mode dFC favoring non-gamers, left superior anterior cingulate cortex 

→ left cerebellum lobule 7b, right ventral tegmental area → right ventrolateral thalamus, and 

right ventral tegmental area → left cerebellum lobule 3, also exhibited significant positive 

correlations with RT, indicating slower responses. Similarly, several receiver-mode dFC 

favoring non-gamers (e.g., left cerebellum lobule 3 → left superior anterior cingulate cortex, 

right ventral tegmental area → left cerebellum lobule 3, and right locus coeruleus → left superior 

anterior cingulate cortex) were positively correlated with RT. 

These results point to a more distributed routing of information in non-gamers, involving 

regions implicated in error correction (cerebellum; Caligiore et al., 2017), stress responses (locus 

coeruleus; Borodovitsyna et al., 2020), and dopaminergic impulsivity (ventral tegmental area; 

Aurelian et al., 2016). In this context, increased VTA signaling may serve as a compensatory 

mechanism for a lack of goal-directed strategy instead opting for greater reward-seeking pathway 

signaling trying to “search” for the correct direction of the target dots, which incurs a 

performance cost. 

5.2.3.3  Structural Connectivity  

In terms of structural connectivity (SC), higher FA between the left calcarine cortex and 

the left superior occipital gyrus predicted slower RTs in non-gamers. While gamers showed 

elevated FA in the left superior occipital–inferior parietal dorsal stream (see Section 3.1.1.2; 
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Cahill et al., 2024), neither this tract nor the FA tract between the calcarine and occipital cortex 

showed a behavioral correlation with RT. However, functional connectivity between the left 

superior occipital gyrus and the left superior parietal lobule was significantly associated with 

faster RTs. Additionally, higher local efficiency in the left superior occipital gyrus predicted 

faster responses, whereas greater node degree was associated with slower performance. SdFC 

sender coupling analyses revealed that increased tract counts with the right calcarine cortex 

tracked with slower response times and was elevated in non-gamers. 

These findings suggest that non-gamers tend to invest more cognitive resources into early 

visual processing, likely to enhance object discrimination and resolution of individual dot 

trajectories, compensating for reduced visuomotor integration. Prior work showed that dorsal 

stream structural integrity does not predict performance in this dataset (Cahill et al., 2024), 

implying that tracts linked to slower RTs likely fall outside core visuomotor pathways (Goodale 

and Milner 1992; Kravitz et al., 2011; Mishkin et al., 1983). These results support the view that 

while early sensory encoding is necessary, behavioral efficiency depends more on effective 

visuomotor transformation and action selection. Cognitive resources yield greater returns when 

used to convert perceptual input into action, rather than for continuous refinement of early-stage 

representations. 

Additional behaviorally relevant SC connections reinforce this view. Faster RTs were 

associated with higher AD between the left superior temporal pole and left inferior frontal orbital 

cortex, regions implicated in integrating high-value sensory input (Herlin et al., 2021) with 

value-based action selection (Rolls, 2023; Rudebeck and Rich, 2018; Shi et al., 2023). The left 

temporal pole more readily receives contextual scene information from the left parahippocampus 
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a key finding in Chapter 4, see Section 4.1.3, enabling the orbital frontal cortex to transform 

learned value representations into goal-directed actions. 

Similarly, greater FA between the left parahippocampal gyrus and the left precuneus was 

associated with faster RTs. The parahippocampus supports recognition of spatial layouts 

(Burgess and O'Keefe, 2003), while the precuneus enables visuospatial simulation (Blihar et al., 

2020; Cavanna and Trimble, 2006; Hahn et al., 2006), both essential for anticipating movement 

trajectories during visuomotor tasks. 

5.2.3.4 Structure–Function Coupling 

Structure–function coupling metrics further clarified behaviorally meaningful dynamics 

by measuring how well a region’s anatomical infrastructure aligns with its functional load 

(Fotiadis et al., 2024). Both intensive (e.g., FA, AD, NQA, NRDI) and extensive (e.g., count, 

ncount2) SC measures showed behavioral relevance. 

Stronger NDRI–FC and AD–FC coupling in the right mid-occipital gyrus predicted faster 

responses. This region is known to support spatial information processing (Renier et al., 2010), 

and these findings suggest that stronger coupling reflects greater alignment between incoming 

visual load and the region’s capacity to relay information downstream. Prior analyses showed 

that gamers exhibited greater local efficiency in both SC constrained FC and SC constrained dFC 

networks involving this same region (see Sections 4.1.4 and 4.1.5), so at equal coupling strength, 

gamers’ networks are better structured to disseminate spatial input and facilitate visuomotor 

transformations. 

Additionally, coupling between streamline count and dFC sender mode in the left medial 

orbital frontal cortex was greater in gamers and negatively correlated with RT, indicating faster 

behavioral responses. This aligns with findings that higher AD between the left superior 
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temporal pole and the left inferior frontal orbital cortex — anatomically proximal and 

functionally similar to the left medial orbital frontal cortex — also tracked with faster RT. Both 

regions are critical for integrating value-based information with motor planning (Rolls, 2023; 

Rudebeck and Rich, 2018). In contrast, elevated ncount2 dFC sender coupling in the right 

calcarine cortex in non-gamers reflects continued reliance on early visual processing, which 

likely contributes to bottlenecks that hinder decision-making performance. 

Finally, enhanced SdFC sender coupling from the right supracallosal anterior cingulate 

cortex was associated with faster response times across multiple SC measures (AD, FA, NQA, 

NRDI). While these findings highlight its role as a sender, they converge with prior reports of 

increased dorsal attention network (DAN) input to the salience network (SN) in gamers (Jordan 

and Dhamala, 2022). Together, these results suggest that the ACC, as a core node within the 

salience network, may integrate high-priority signals, such as those originating from DAN 

regions, more readily in gamers and transmit top-down control signals to resolve competition 

between motor plans. The fact that SdFC sender coupling aligns with multiple SC metrics 

reinforces the idea that, whenever the ACC is engaged, its core functional role is to reduce 

uncertainty and resolve conflict between competing actions. The strengthened DAN-to-SN 

interaction in gamers further supports the findings of this analysis, suggesting that gamers 

display better attentional control, leading to integration of high-value visual information more 

readily than non-gamers, allowing them to discern the direction of target dots and make a 

confident selection more quickly. 
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5.2.4 Synthesis of Findings Across Modalities  

Across modalities, a consistent pattern emerged that faster response times were 

associated with stronger connectivity in circuits involved in transforming high-value sensory 

information into goal-directed action and supporting goal-directed motor execution, i.e., regions 

implicated in resolving perceptual ambiguity more effectively tracked with faster RT. Central to 

this process was the superior anterior cingulate cortex (ACC sup), a region traditionally 

associated with conflict monitoring and the resolution of competing motor plans (Brockett & 

Roesch, 2021). More recent work suggests the ACC functions as a key hub for uncertainty-

driven cognitive control, particularly in dynamic and feedback-sensitive decision environments 

(Chen et al., 2024; Monosov, 2017; Monosov et al., 2020; Mushtaq et al., 2011).  These areas 

likely serve to clarify salience signals and commit to goal-relevant actions once monitoring 

demands have been satisfied. The superior ACC was previously found to be  a significant node 

involved with the increased DAN-to-SN interaction observed in gamers which that tracked with 

improved RT (Jordan & Dhamala, 2022) and within the right ACC a node by which enhanced 

SdFC sender coupling tracked with improved response times across multiple SC measures. 

Conversely, increased activity among regions involved in motor correction, stress 

reactivity, and dopaminergic signaling was positively correlated with response time, indicating 

slower performance and stronger involvement in non-gamers. This pattern may reflect reduced 

access to high-value salient cues, as suggested by greater engagement of early visual areas and 

cerebellar–midbrain–thalamic circuits (Caligiore et al., 2017; Popa & Ebner, 2019; Seidler et al., 

2013). These compensatory pathways likely reflect increased reliance on bottom-up processing 

and corrective feedback, with the anterior cingulate cortex (ACC) potentially recruited to 

manage elevated uncertainty during response selection. 
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Examples of regions implicated in resolving ambiguity in these findings include the left 

medial frontal orbital cortex, an executive region critical for integrating value-based information 

with motor planning. SdFC sender coupling with streamline count in this region was 

significantly stronger in gamers (p = 0.32, d = 0.74) and negatively correlated with response time 

(r = –0.34, p = 0.035), consistent with improved performance. Another example includes 

increased synchrony, measured by functional connectivity, between the red nucleus—a lower 

midbrain structure canonically linked to limb control—and the pulvinar thalamus, reflecting 

enhanced bottom-up and top-down coordination. This connection likely contributes to perceptual 

disambiguation by signaling motor readiness (Basile et al., 2021; Brockett et al., 2020; Krimmel 

et al., 2024), effectively facilitating the “I’m ready to press the button” moment. 

This finding parallels prior work in Go/No-Go paradigms, where red nucleus activity 

modulates motor output based on recent trial history, speeding responses after Go trials and 

promoting caution after Stop trials. Critically, red nucleus neurons amplify directional signals 

during successful Stop trials, suggesting a role in reshaping ongoing motor plans when initial 

responses must be inhibited. This capacity for rapid, context-sensitive motor adjustment reflects 

a form of feedforward control, in which the system anticipates task demands and dynamically 

tunes motor output in real time. The functional connection between the red nucleus and pulvinar 

thalamus is supported by a group-level difference favoring gamers (p = 0.0061, q = 0.02, d = 

0.85), and negatively correlated with response time (r = –0.41, p = 0.009), which suggests that 

long-term exposure to high-stakes, fast-paced environments fosters a neurocognitive strategy that 

prioritizes feedforward conflict resolution—facilitating swift action and flexible, real-time motor 

adjustments under uncertainty. 
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These findings collectively confirm our second hypothesis that a novel, data-driven 

approach based on explained cumulative structured variance (rcPCA) can successfully identify 

behaviorally relevant connections and structure–function couplings. This method provided a 

more granular and meaningful view of the neuroplastic refinements observed in gamers and laid 

the groundwork for testing our primary hypothesis. 

Overall, gamers demonstrate enhanced top-down cognitive clarity, unobstructed 

translation of learned value into action, and bottom-up motor readiness when making visuomotor 

decisions under uncertainty. This configuration reduces the need for prolonged internal conflict 

resolution between competing motor plans and offers what may be a functionally necessary and 

sufficient explanation for their accelerated decision-making compared to non-gamers. 

This neurocognitive visuomotor decision making profile supports a feedforward, 

proactive strategy for visuomotor transformation, through which gamers exhibit an optimized 

neural architecture for fast, adaptive, goal-directed behavior—one that more readily anticipates 

possible task outcomes and enables flexible, real-time motor corrections. By reducing internal 

uncertainty more efficiently, this yields a more effective cognitive architecture for action 

selection under dynamic, time-sensitive conditions. 

In the context of our modified moving-dots task, this strategy was expressed as greater 

reliance on top-down selection of goal-directed responses based on scene-specific contextual 

cues, such as the motion of target dots relative to distractors. Gamers adapted more effectively to 

either possible outcome of a 50/50 visuomotor decision, reflecting enhanced cognitive flexibility 

and attentional control. 
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Our results support the primary hypothesis that long-term action video game (AVG) play 

reflects neuroplastic refinements that reduce visuomotor surprise by shifting toward superior 

decision-making strategies—ones that more effectively resolve prediction error and minimize 

internal conflict regarding competing motor plans. This facilitates a more optimal cognitive state 

for visuomotor decisions, one that is primed to rapidly incorporate salient, task-relevant 

information and execute swift, accurate, and decisive actions. 

Ultimately, these neuroplastic refinements reflect a reallocation of cognitive resources 

toward circuits that minimize visuomotor surprise more efficiently. Cognitive Resource 

Reallocation (CRR) thus emerges once again as a viable mechanistic explanation hypothesized to 

drive the enhancement of a baseline cognitive state over time, enabling refinements in neural 

configuration adapted to repeated task demands. This shift toward optimizing internal conflict 

resolution may not merely reflect a gaming-related adaptation but a broader principle regarding 

how cognitive systems respond to prolonged cycles of strenuous task engagement and 

recovery—gradually reallocating resources to stabilize changes in cognitive action over time, 

promoting local refinements that enhance overall efficiency during task performance by targeting 

regions and connections most involved in reducing task-induced strain. 

In the case of AVG experience, this would lead to neuroplastic refinements that translate 

into more efficient visuomotor decision-making—a common and frequent demand during 

gameplay, where errors often come with significant costs. Over time, the brain learns to 

prioritize high-value visual cues, promote goal-directed action, and increase motor readiness to 

respond to uncertainty in dynamically changing environments. This ultimately results in 

quantifiable improvements, establishing a new set point by which the brain makes visuomotor 
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decisions—leading to the ~190 ms response time improvement observed in this dataset, without 

any loss in accuracy. 

As gamers repeatedly engage in high-stakes, rapid-response tasks, the CRR framework 

posits that the brain reallocates resources toward pathways that facilitate more proficient AVG 

performance. These reallocations map cleanly onto cognitive improvements consistently reported 

in the literature, including enhanced visual acuity (Green & Bavelier, 2007), visuomotor 

integration (Cahill et al., 2024; Granek et al., 2010), attentional control (Bavelier & Green, 

2019), and cognitive flexibility (Glass et al., 2013). The point to be emphasized here is that, 

rather than endlessly refining early sensory representations beyond a sufficiently reliable 

threshold, long-term AVG experience encourages the brain to avoid diminishing returns—its 

priority is to execute the task as efficiently as possible while incurring minimal strain. Over 

repeated cycles of task engagement and recovery, resources are reallocated toward downstream 

processes more directly involved in effective gameplay, particularly those supporting visuomotor 

decision-making and perception–action coupling. This shift offers a comprehensive and 

mechanistically grounded account of the functional gains observed in gamers and provides a 

clear neural signature of long-term adaptive plasticity associated with AVG play. 

5.2.5 Concluding Remarks 

This study introduces a novel, data-driven PCA-based method for ROI selection (rcPCA) 

that reveals significant neuroplastic adaptations consistent with what would be expected from 

long-term action video game (AVG) experience. Our findings, based on a multimodal whole-

brain neuroimaging analysis, provide empirical support for the Cognitive Resource Reallocation 

(CRR) framework, which posits that the brain optimizes performance by reallocating functional 
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and metabolic resources toward anatomically plausible, behaviorally relevant circuits to better 

meet demanding task conditions—ultimately mitigating costly prediction errors.  

We show that AVG experience reflects more efficient visuomotor decision-making 

through enhanced top-down cognitive clarity, unobstructed transformation of learned value into 

goal-directed action, and heightened bottom-up motor readiness. The convergence of these 

factors reduces internal conflict, mitigates visuomotor surprise, and enables rapid yet skillful 

action selection through greater anticipation of multiple possible outcomes under uncertainty.  

Our PCA-based structured variance method offers ample room for future development, 

including the integration of demographic or clinical covariates and the application of nonlinear 

dimensionality reduction approaches, such as kernel PCA, to capture more complex 

representational variance. This work not only demonstrates the utility of principled, data-driven 

neuroimaging tools but also provides a foundation for future research aimed at enhancing human 

performance through targeted cognitive adaptation. While future studies are needed to assess the 

broader generalizability and nonlinear dynamics of rcPCA, the present findings offer both a 

novel analytical method and a mechanistically grounded view of how experience reshapes 

cognition. They highlight the brain’s remarkable ability to “level up” through repeated 

encounters with cognitively demanding challenges. Through adaptive resource reallocation, 

these challenges become less effortful over time, minimizing internal conflict, reducing 

uncertainty, and ultimately enabling more efficient, high-performance behavior. The findings 

from this chapter strongly support that action video game play could drive targeted neuroplastic 

refinement and offers a generalizable blueprint for cognitive optimization through adaptive 

resource reallocation. 
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6 SYNTHESIS OF FINDINGS AND THEORETICAL UNIFICATION 

6.1 Synthesis of Findings   

Across all three analytical domains that were considered (structural connectivity, 

functional connectivity, and directed functional connectivity), gamers consistently demonstrated 

neural patterns indicative of enhanced visuomotor decision-making that align with their 

behavioral advantage of ~190ms in our moving-dots visuomotor decision task without loss of 

accuracy. These patterns, presented independently across Chapters 3 through 5, were marked by 

reduced redundancy and streamlined functional clarity. They align with neuroplastic refinements 

that would reasonably be expected to support improved performance during action video game 

play. 

Although each modality was evaluated separately, a convergent mechanistic signature 

emerged. The findings provided clear and consistent support for Cognitive Resource 

Reallocation (CRR). The empirical results presented throughout this dissertation showed no 

contradictions to CRR as the mechanism driving the neuroplastic refinements observed in 

gamers. Instead, they point to a reallocation process in which repeated episodes of task 

engagement and recovery in cognitively demanding environments compel the brain to refine 

itself through internal redistribution of resources. 

CRR has emerged as a strong explanatory candidate for enhanced visuomotor 

performance. When paired with the structural and functional evidence documented in this 

dissertation, it becomes clear that a formal, physically grounded framework is warranted. This 

led to the development of Cognitive Resource Theory (CRT), which provides a quantifiable 
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structure for CRR. CRT is not intended as a heuristic but as a principled model that can be 

evaluated, tested, and refined using real data. 

If future predictions derived from CRT do not hold up broadly, from the author’s 

perspective this would not represent failure. Such an outcome would offer an opportunity to 

reassess how cognitive energy is managed under physical constraint, as well as to evaluate 

whether the proposed mechanisms are overly rigid, too broad, or incomplete. Even if CRT does 

not ultimately provide a complete first-principles account of cognition, it would still represent 

meaningful progress toward uncovering the physical mechanisms governing neuroplastic 

phenomena underlying cognitive adaptations. 

However, it is worth noting that CRT also generated a prediction not explicitly contained 

in the original dataset. Specifically, it anticipated a relationship between connectivity dynamics 

and sleep–wake modulation. When subjected to internal consistency checks, CRT produced a 

true a priori prediction, as detailed in Section 6.2.7. 

Within the scope of this dissertation, CRR consistently aligned with observed patterns. 

Although the formalization of CRR came after the visual stream analysis presented in Chapter 3, 

the theory remains compatible with those results. It also served as the leading hypothesis 

throughout Chapters 4 and 5. CRR was not applied retroactively. It was evaluated in real time as 

a proposed explanation for the behavioral advantages observed in gamers. CRT, in turn, 

formalizes how CRR could arise in a dynamic and energy-constrained system such as the human 

brain. 
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Altogether, this synthesis supports the conclusion that CRR is not just a descriptive label. 

It is a core mechanism of neural adaptation under pressure. To develop this mechanism further 

and place it within a physically grounded theory of cognition, the next section introduces 

Cognitive Resource Theory (CRT), a unified framework that treats cognition as a constrained 

energetic process governed by fundamental physical principles. 

6.2 Theoretical Unification: Cognitive Resource Theory (CRT) 

A Gauge-Theoretic, Thermodynamic Framework of Cognition 

6.2.1 Cognitive Resource Theory: Introduction 

CRR has demonstrated empirical validity as the latent organizing principle across every 

major analysis presented in this dissertation. Multiple data modalities—spanning structural, 

functional, and directed functional connectivity—and diverse statistical approaches consistently 

supported the same explanatory mechanism. This convergence suggests that the observed effects 

are not incidental, but instead reflect a deeper, underlying principle of neural adaptation. Such 

consistency calls for a precise, physically grounded theoretical framework. 

Cognitive Resource Theory (CRT) was developed to meet this need. CRT formalizes the 

mechanisms of cognitive resource allocation and reallocation as dynamic energetic processes 

embedded in physically lawful neural dynamics. By unifying structural, functional, and 

behavioral considerations into a single coherent formalism, CRT elevates CRR from a 

descriptive concept to a quantifiably testable principle of cognition under constraint. If further 

validated, CRT may inform new theoretical, computational, and applied paradigms across 

neuroscience, cognitive modeling, and adaptive systems research.At its core, CRT is a physics-

based framework for modeling cognition as a process of energy-constrained optimization. It is 
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built on two complementary components that operate in tandem: Cognitive Resource Allocation 

(CRA) and Cognitive Resource Reallocation (CRR).  

CRA refers to the brain’s baseline distribution of energy across cognitive systems. This 

allocation reflects a dynamic equilibrium shaped by internal constraints such as metabolic 

availability, neural efficiency, anatomical connectivity, and ongoing regulatory demands from 

the nervous system (Alister et al., 2024; Longman et al., 2023; Saberi et al., 2024; Schmidt, 

2014). CRA determines the energetic landscape that supports routine cognitive operations such 

as perception, decision-making, and action when the system is not under duress. In effect, CRA 

defines a dynamic ground state of cognition characterized by energetic stability and homeostasis. 

Up to this point, CRR has been used throughout this dissertation as a conceptual 

framework to interpret the observed patterns of neuroplasticity, particularly in explaining how 

repeated engagement in AVG play reflects neuroplastic refinement within task-relevant circuits. 

While this interpretation has been shown to be empirically valid, CRT now expands CRR into a 

formal theoretical construct. Within this framework, CRR is no longer treated merely as a 

descriptive inference but as a physically grounded mechanism defined in energetic terms. It is 

best understood as a dynamic perturbation of the baseline configuration defined by CRA. It 

governs how the system redirects energetic resources in response to cognitive strain—such as 

uncertainty, frustration, or task demands that exceed CRA capacity. Rather than representing a 

breakdown, CRR acts as an adaptive response to unaccommodated internal friction. By 

reallocating energy toward circuits most relevant for successful task performance and 

downregulating those less critical, the brain recalibrates itself in real time. Through repeated 
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episodes of engagement and recovery, these perturbations drive neuroplastic refinements that 

stabilize more efficient neural configurations. 

Although concepts resembling CRR have appeared in prior work on learning, attention, 

working memory, and motor adaptation (Becker et al., 1996; Buhusi & Meck, 2009; Barbot et 

al., 2021), they have not been formally defined as physically grounded mechanisms. CRT offers 

such a formalism by embedding CRA and CRR within a broader energetic model of cognition, 

using thermodynamic and variational principles to describe how real energetic constraints shape 

the brain’s capacity for adaptive modification. This framework also helps clarify the mechanism 

by which long-term gameplay would produce a targeted neuroplastic refinement. 

For example, as described in Chapter 3, improved functional connectivity between the 

left superior occipital gyrus (SOG) and left superior parietal lobule (SPL) in gamers can be 

understood as a direct outcome of repeated CRR episodes. The persistent demand for rapid 

visual processing of where objects are and how they are moving during gameplay imposes 

cognitive strain on this pathway, straining CRA baseline support. In response, CRR would 

episodically reallocate energetic resources to facilitate more efficient signal transmission 

between these regions. Over time, these repeated perturbations stabilize into more streamlined 

configurations, reducing overall strain for the same cognitive task, yielding behavioral 

improvements in visuomotor decision-making. In this way, CRT explains how both baseline 

support (CRA) and dynamic refinement (CRR) operate in tandem to drive the effects observed in 

empirical data. 
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6.2.1.1 CRT Postulates 

To formally construct Cognitive Resource Theory (CRT), it is necessary to begin with 

three foundational assumptions. These assumptions are not arbitrary; rather, they reflect a 

deliberate extension of core physical principles to the domain of cognition. Each postulate is 

motivated by both empirical observation and theoretical coherence, providing the scaffolding 

upon which the remainder of the framework is built. 

The first postulate of CRT asserts that cognition is a physical system. As with any 

physical system, cognitive processes unfold within a structure governed by physical laws and 

well-defined energy dynamics. Accordingly, the state of the cognitive system can be described 

by a Hamiltonian, which defines the total energy of the system at a given moment 

𝐻CRT(𝑡) = 𝐻𝐶𝑅𝐴(𝑡) + ε𝑅CRR(𝑡). 

𝐻CRA(𝑡) describes an unperturbed internally regulated configuration—governed by resting state 

dynamics, metabolic drift, homeostasis, and slow-timescale fluctuations. 𝜀𝑅CRR(𝑡) denotes a 

first-order perturbation that thermodynamically reallocates cognitive energy in response to 

cognitive strain. 

The second postulate of CRT assumes that cognition follows the principle of stationary 

action—a unifying principle in physics stating that systems tend to evolve along paths that 

extremize (typically minimize) total energetic expenditure over time. From this structure, well-

known conservation laws such as conservation of energy and momentum are derived based on a 

system’s invariance under continuous transformations in time and space, as formalized by 

Noether’s Theorem. Applying this principle to the brain suggests that cognitive processes, like 

all physical processes, naturally shift toward more efficient configurations when viable, 
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minimizing unnecessary energy expenditure. In CRT, this principle is formally expressed using 

the variational condition 

δ∫ 𝐿CRT(𝑞, 𝑞,̇ 𝑡)⁡𝑑
𝑡1

𝑡0

𝑡 = 0⁡, 

where 𝑞⁡is⁡a⁡generalized coordinate in configuration space and δ is the symbol used to denote 

the variational derivative of the path taken by the CRT Lagrangian, 𝐿CRT(𝑞, 𝑞,̇ 𝑡). 

Applied to the brain, this principle suggests that cognitive processes tend to shift toward 

energetically favorable configurations when such shifts are viable, minimizing unnecessary 

work. In this light, cognitive adaptation is not merely reactive but reflects an intrinsic drive 

toward optimal functioning under physical constraint. 

The third and final postulate of CRT is that cognition, like all physical systems, obeys the 

second law of thermodynamics, which means that it tends toward equilibrium with its 

surroundings, generating entropy in the process and is classically described by the expression  

Δ𝑆⁡ > ⁡
𝛿𝑄

𝑇𝑠𝑢𝑟𝑟
, 

 where Δ𝑆⁡ is the total change in entropy, 𝛿𝑄 is the heat exchanged with the cognitive system’s 

surroundings and 𝑇𝑠𝑢𝑟𝑟 is the temperature of the surrounding environment. That is, when the 

brain is pushed out of CRA equilibrium by cognitive strain, entropy tends to increase—unless 

counteracted. To achieve reordering or adaptive complexity, two conditions must be met: an 

energetic drive (work source or exergy) and an instructive signal (Wright, 2017). CRR fulfills 

both roles, functioning as the energetic and organizational mechanism by which a cognitive 

system adapts and reconfigures to reduce energetic expenditure and achieve a better alignment 

with its environment. 
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In CRT, entropy production serves both as a signal of adaptation and a marker of 

cognitive load. When task demands strain what CRA can support, CRR enables the brain to 

explore and realize new configurations, consistent with the second postulate of CRT. This 

thermodynamic cost of adaptation can be modeled using formal entropy measures, such as the 

von Neumann entropy of the system’s state, as described in Section 6.2.4.1. 

6.2.2  Cognitive Resource Allocation  

At "rest"—or as restful as the brain ever becomes—the system organizes its resources 

into a relatively stable configuration aligned with intrinsic network activity, forming a dynamic 

equilibrium shaped by biological factors such as metabolic efficiency, energetic stability, and 

internal homeostasis. It reflects the brain’s moment-to-moment availability of cognitive energy, 

influenced by internal fluctuations and regulated by the nervous system. Empirically, this 

corresponds to resting-state network dynamics, where coordinated activity within systems such 

as the default mode network (DMN), dorsal attention network (DAN), and salience network 

(SN) coordinated intrinsic organization within systems such as the DMN, DAN, and SN reflects 

the brain’s default resource distribution in the absence of task-induced strain (Yeo et al., 2011) . 

In CRT, both internal energy and cognitive temperature are treated as dynamic variables. This is 

not only due to physiological rhythms but also in response to sustained cognitive demands. As 

these demands accumulate, the system engages CRR to reallocate energy toward efforts that 

reduce internal friction and help minimize cognitive action. Over time, repeated CRR episodes 

gradually refine CRA, allowing the brain to stabilize more efficient energy configurations. The 

baseline allocation updates to better align the system with its environment. CRA thus encodes a 

dynamic baseline shaped by experience, while CRR functions as the mechanism that perturbs 

and reshapes that baseline in response to demand. 
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6.2.2.1  Gauge Theoretic Construction of CRA Energy  

To formalize CRA energy, we introduce a gauge-theoretic structure that mirrors classical 

field theory. Cognitive Resource Allocation (CRA) is modeled as a conserved field over 

cognitive state space, governed by scalar and vector potentials that distribute energy efficiently 

across the brain’s network architecture.  

The dynamics of this field are described by a cognitive field C⃗ CRA(𝑥, 𝑡)  defined as the 

negative gradient of a scalar potential Φ𝐶𝑅𝐴(𝑥, 𝑡). This relationship can be expressed as 

C⃗ CRA(𝑥, 𝑡) = −∇Φ𝐶𝑅𝐴(𝑥, 𝑡). 

A cognitive vector potential⁡⁡𝐴𝜇  governs the dynamic flow of cognitive energy over time 

and across regions. From this, we can construct the cognitive field tensor for CRA as 

𝐹𝐶𝑅𝐴
𝜇𝜈 (𝑥, 𝑡) = 𝜕𝜇𝐴𝐶𝑅𝐴

𝜈 (𝑥, 𝑡) − 𝜕𝜈𝐴𝐶𝑅𝐴
𝜇 (𝑥, 𝑡), 

 where the gauge fixing condition is given by 𝜕𝜇𝐴(𝐶𝑅𝐴)
𝜇 = 0.  

In CRT, the vector potential , 𝐴𝜇, is not introduced as an abstract or metaphorical 

construct. Rather, since CRT energy is treated as a partitioned subset of total neural energy, any 

vector field governing neural resource flow would, by necessity, project a real and meaningful 

component onto the cognitive subspace, while a derivation of this full neural resource field is 

beyond the scope of this dissertation neural resources may include the delivery and utilization of 

well-known biological resources such as oxygen, glucose, neurotransmitters, and other substrates 

required for sustained neural activity.  

6.2.3 Cognitive Resource Reallocation  

Cognitive Resource Reallocation (CRR) models neuroplasticity as the adaptive 

reallocation of neural resources toward circuits that support cognitive function  that facilitate task 
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engagement under energetic constraint, focusing on neuroplastic changes within that support task 

proficiency while moving away from less efficient processing. 

CRR dynamically modulates CRA to better support repeated task demands under 

energetic constraint, to task demands. Therefore, the Hamiltonian for CRT is expressed as the 

sum of the total CRA energy at a given moment  𝐻CRA⁡(𝑡) and the cognitive resource reallocation 

term 𝜀𝑅𝐶𝑅𝑅(𝑡) where⁡𝑅𝐶𝑅𝑅 is a thermodynamic reallocation function. This relationship is 

formalized by the CRT Hamiltonian 

 𝐻𝐶𝑅𝑇(𝑡) = 𝐻CRA(𝑡) + 𝜀𝑅𝐶𝑅𝑅(𝑡).   

The parameter ε acts as a perturbation coefficient, quantifying the degree to which CRR 

modifies baseline cognitive dynamics. It serves as a coupling parameter that scales the influence 

of reallocation relative to the stability maintained by CRA. In physical terms, ε reflects how 

sensitively the system responds to task-induced demands or internal fluctuations. 

When ε = 0, the system evolves according to its unperturbed baseline (CRA-only); as ε 

increases, CRR exerts proportionally more influence over the cognitive system. Typically, 

epsilon is assumed to be small 0 < ε ≪ 1,⁡⁡as in other perturbative systems, reflecting that CRR 

corrections are small relative to CRA, which defines the system’s energetic baseline state. This 

preserves baseline coherence, maintaining a dynamic equilibrium between stability and 

adaptability. Abnormally large ε would indicate runaway reallocation dynamics, which may 

reflect some pathological cognitive state. Cognitive states that would require higher-order 

corrections are beyond the scope of this dissertation and reserved for future investigation. 
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6.2.4 Thermodynamic Foundations of CRT 

6.2.4.1 Helmholtz Free Energy in CRT 

To define the total free energy of CRT, we begin by examining the free energy 

expressions for its two core components: Cognitive Resource Allocation (CRA) and Cognitive 

Resource Reallocation (CRR). Cognitive Resource Allocatoion (CRA) defines a baseline 

energetic configuration. It's Helmholtz's free energy 𝐹CRA(𝑡) is defined as the trade-off between 

the internal energy 𝑈CRA⁡(𝑡), and the thermal energy lost to entropy, given by the product  

𝑇(𝑡)𝑆CRA(𝑡). This yields the standard expression for Helmholtz free energy 

𝐹CRA(𝑡) = 𝑈CRA(𝑡) − 𝑇(𝑡)𝑆CRA(𝑡). 

Unlike CRA, which defines a relatively stable baseline energy configuration, CRR 

governs the system’s adaptive response to cognitive strain. Because this reallocation process 

departs from the baseline established by CRA, its thermodynamic contribution cannot be 

subsumed under CRA’s free energy. Instead, CRR warrants its own free energy profile to capture 

the distinct trade-off between investing internally available energy and overcoming 

configurational entropy. The energy available for reallocation is denoted⁡𝐸A⁡(𝑡),⁡ which 

represents the portion of the system’s energy budget not already committed to baseline cognitive 

operations or essential maintenance. Accordingly, this quantity defines the internal energy of the 

CRR subsystem: 

𝑈𝐶𝑅𝑅(𝑡) ≡  𝐸A⁡(𝑡), 

which allows the system to produce refinements that minimize its action in anticipation of 

expected future strain—analogous to how repeated training strengthens muscle tissue and 

reinforces structural integrity. These structural adjustments increase the system’s robustness to 
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energetic perturbations, enabling it to more effectively minimize its action with respect to 

expected load. The free energy of this reallocation process is given by 

 𝐹𝐶𝑅𝑅(𝑡) = 𝑈𝐶𝑅𝑅(𝑡) − 𝑇(𝑡)𝑆𝐶𝑅𝑅(𝑡).  

We now define the total free energy of CRT as the combination of energetic and entropic 

contributions from both CRA and CRR. This total free energy reflects the system’s full cognitive 

state, incorporating both baseline stability and adaptive flexibility. The general form follows the 

Helmholtz definition 

𝐹𝐶𝑅𝑇(𝑡) = 𝑈𝐶𝑅𝑇(𝑡) − 𝑇(𝑡)𝑆𝐶𝑅𝑇(𝑡).  

However, we must be careful in describing how internal energy and entropy of CRT are 

composed. Internal energy is additive by the first law of thermodynamics, which states that the 

total energy of a closed system is conserved and equals the sum of the energies of its constituent 

parts. In CRT, this allows us to write 

𝑈𝐶𝑅𝑇(𝑡) ⁡= 𝑈CRA(𝑡) ⁡+ ⁡𝑈𝐶𝑅𝑅(𝑡), 

since CRA and CRR represent distinct energy-contributing. Even if these processes interact or 

overlap functionally, the total energy remains a conserved scalar quantity and can be 

meaningfully partitioned and summed.  

Entropy like energy is considered an extensive property, meaning it scales with the size 

of the system under the assumption that subsystems are independent. For example, doubling the 

number of independent particles in an ideal gas doubles the entropy. 

However, in complex interacting systems CRA and CRR are not isolated; they share overlapping 

circuitry, resource channels, and constraints. As a result, entropy in CRT must be computed 

holistically from the total system state. This means in general for CRT 

𝑆𝐶𝑅𝑇 ⁡ ≠ ⁡𝑆CRA(𝑡) ⁡+ 𝑆𝐶𝑅𝑅(𝑡),⁡  
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and must instead by calculated holistically using the von Neumann entropy expressed by the 

system’s density matrix 𝜌𝐶𝑅𝑇 which is defined as 

𝑆CRT = −Tr(𝜌𝐶𝑅𝑇 ln 𝜌𝐶𝑅𝑇), 

 where Tr denotes the trace operator. This formulation captures the system’s total cognitive 

uncertainty under both allocation and reallocation dynamics. Therefore, 𝐹𝐶𝑅𝑇(𝑡), the total free 

energy of CRT, incorporating both CRA and CRR contributions, is given by 

𝐹𝐶𝑅𝑇(𝑡) ⁡= [⁡𝑈CRA(𝑡) ⁡+⁡𝑈𝐶𝑅𝑅(𝑡)] ⁡− 𝑇(𝑡)𝑆𝐶𝑅𝑇(𝑡).⁡⁡ 

6.2.4.2 Free Energy Minimization in CRR 

Up to now we have described the CRT Hamiltonian as 

 𝐻𝐶𝑅𝑇(𝑡) = 𝐻CRA(𝑡) + 𝜀𝑅𝐶𝑅𝑅(𝑡)),   

where⁡𝑈CRA(𝑡) ⁡= ⁡ 〈𝐻CRA(𝑡)〉⁡, and 𝑅𝐶𝑅𝑅(𝑡) is a thermodynamic reallocation function but up to 

now we have declined to specify what form 𝑅𝐶𝑅𝑅 should take and what are its variable 

dependencies besides some arbitrary function that evolves in time. Since we are treating 

cognition as a physical system and 𝑅𝐶𝑅𝑅  as a physical dynamic reallocation mechanism should 

depend at least on the available energy for reallocation 𝐸A(𝑡) and reallocation must occur within 

some physical environment which implies a dependence on  𝑇(t) defined as the cognitive 

temperature of the system.  Therefore 𝑅𝐶𝑅𝑅(𝑇⁡, 𝐸A(𝑡))⁡⁡provides the minimum dependencies 

which a relocation mechanism can physically exist.    

As mentioned, the available energy, 𝐸A(𝑡)⁡denotes the pool of cognitive energy currently 

accessible for reallocation by CRR. It excludes energy already committed to baseline CRA 

operations, represented by 𝐸CRA(𝑡) as well as energy locked into essential maintenance functions, 

such as homeostatic regulation, the support of vital systems or other neural processes that are 

categorically distinct from cognition as defined by the American Psychological 
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Association(Association, 2018), denoted⁡𝐸L. Thus, the available energy  𝐸A is given by the 

expression  

𝐸A⁡(𝑡) ⁡= ⁡𝐸total(𝑡) ⁡−⁡𝐸CRA(𝑡) ⁡− ⁡𝐸locked(𝑡)⁡,⁡⁡ 

where 𝐸total⁡(t) represents total energy at a given moment determined by the system’s global 

metabolic budget. 

In order describe how adaptive reallocation unfolds under cognitive strain, it is necessary 

to formulate a physically plausible expression for the reallocation function 𝑅𝐶𝑅𝑅(𝑇, 𝐸A). Since 

CRR is understood as a process that adaptively redistributes energy to reduce internal strain, its 

behavior should be consistent with thermodynamic principles—namely, the tendency of physical 

systems to minimize their free energy. In this context, the Helmholtz free energy of CRR,  

⁡𝐹𝐶𝑅𝑅(𝑡), previously defined in Section 6.2.4.1 is the quantity to be minimized. To determine 

how the system minimizes 𝐹𝐶𝑅𝑅(𝑡), we proceed by substituting 𝑈𝐶𝑅𝑅(𝑡) ≡  𝐸A⁡(𝑡)⁡⁡and⁡taking 

partial derivative with respect to the available energy, 𝐸A⁡(𝑡), and setting it equal to zero. This 

yields 

𝜕𝐹𝐶𝑅𝑅(𝑡)

𝜕𝐸A(𝑡)
=

𝜕𝐸A(𝑡)

𝜕𝐸A(𝑡)
− 𝑇(𝑡)

𝜕𝑆𝐶𝑅𝑅(𝑡)

𝜕𝐸A(𝑡)
= 1 − 𝑇(𝑡)

𝜕𝑆𝐶𝑅𝑅(𝑡)

𝜕𝐸A(𝑡)
, 

where 𝑇 is cognitive temperature, an 𝑆𝐶𝑅𝑅 is the CRR entropy. 

 To ensure that reallocation proceeds toward a physically meaningful equilibrium, we 

require that the system evolve such that 𝑅𝐶𝑅𝑅(𝑇, 𝐸A) → 0 corresponding to the minimization of 

𝐹𝐶𝑅𝑅, a process widely recognized as gradient descent. The only way this function tends toward 

zero is if the magnitude of  
𝜕𝐹𝐶𝑅𝑅(𝑡)

𝜕𝐸A(𝑡)
 → 0⁡which implies ⁡1 − 𝑇(𝑡)

𝜕𝑆𝐶𝑅𝑅(𝑡)

𝜕𝐸A(𝑡)
→ 0.⁡ 

 However, from dimensional analysis, 𝑇, 𝑆𝐶𝑅𝑅⁡, and⁡⁡𝐸A⁡are all positive-definite quantities 

with consistent units. Since the elements of CRR form a dynamic subsystem within CRT—
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exchanging energy with other constituents of the full system—their thermodynamic behavior is 

bounded. If the entire CRT system in equilibrium at a temperature, 𝑇, then 𝑆𝐶𝑅𝑅 per unit of 

𝐸A⁡must satisfy a constraint such that 0 <
𝜕𝑆𝐶𝑅𝑅(𝑡)

𝜕𝐸A(𝑡)
≤

1

𝑇⁡
 . Thus, minimization occurs only when 

the system saturates its capacity for configurational reordering, and any further energy 

investment yields no additional changes to 𝑆𝐶𝑅𝑅.  Therefore, the expression that satisfies the 

minimization criterion is 

𝑅𝐶𝑅𝑅(𝑇, 𝐸A) = 𝑇
𝑑𝑆𝐶𝑅𝑅

𝑑𝐸A
− 1⁡ = −

𝜕𝐹𝐶𝑅𝑅(𝑡)

𝜕𝐸A(𝑡)
,⁡⁡ 

arriving at a final expression for the reallocation function given by 

𝑅𝐶𝑅𝑅(𝑇, 𝐸A(𝑡)) = −
∂𝐹𝐶𝑅𝑅(𝑡)

∂𝐸A(𝑡)
. 

CRT also supports a generalized, field-based formulation of cognitive resource 

reallocation. In this view, CRR is treated as a spatially and temporally distributed function 

shaped by local entropy gradients and directional task constraints. The generalized reallocation 

function takes the form 

𝑅𝐶𝑅𝑅(𝑥, 𝑡) = 𝑓(∇𝑆𝐶𝑅𝑇(𝑥, 𝑡), 𝐶(𝑥 → 𝑦, 𝑡)). 

Here, ∇𝑆𝐶𝑅𝑇(𝑥, 𝑡)⁡ denotes the spatial gradient of cognitive entropy at a given moment in 

time, capturing how rapidly uncertainty or representational conflict changes across the system. 

The term 𝐶(𝑥 → 𝑦, 𝑡), represents a directional constraint term constraint imposed by task 

demands or interregional influence. In a field-theoretic formulation of CRT , the causal 

constraint term can be empirically defined using variance-based Granger causality described by 

𝐶(𝑥 → 𝑦, 𝑡) = Δ𝑅2 = 𝑅full⁡
2 − 𝑅reduced

2 ⁡, 

where 𝑅full⁡
2 is the variance in region y explained when the past activity past activity of region x is 

included, and 𝑅reduced⁡
2  when it is excluded. ⁡⁡∆𝑅2, was quantified in our analyses using time-
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domain Granger causality (TGC), providing a estimate of directional influence brain regions. 

These results gain further theoretical insight as stronger values of ⁡⁡∆𝑅2 indicate more influential 

paths guiding CRR toward structurally and functionally effective routes of energy reallocation.  

6.2.4.2.1 Cognitive Efficiency Index 

To quantify how efficiently the brain meets task demands using baseline cognitive 

resources, CRT defines a cognitive efficiency index, 𝜂𝑒𝑓𝑓, characterized by the expression 

𝜂𝑒𝑓𝑓 =
𝐸task(𝑡)

𝐸CRA(𝑡)
. 

This index, 𝜂𝑒𝑓𝑓, expresses the ratio of required task energy, 𝐸task(𝑡)⁡,to the energy 

already allocated through CRA, 𝐸CRA(𝑡). When 𝜂𝑒𝑓𝑓 < ⁡1, the task is over-supported.  When 

𝜂𝑒𝑓𝑓 = ⁡1, task demands are matched exactly by baseline resources—indicating maximal 

efficiency. When 𝜂𝑒𝑓𝑓 > ⁡1 task is under supported.  This interpretation reframes cognitive 

efficiency as a thermodynamic budget CRA defines the system’s energetic input, while the task 

imposes an output requirement. In doing so, it offers a useful lens for interpreting resource 

mismatch and reallocation dynamics. 

This framework also parallels broader theories in dynamical optimization, including 

control theory, attractor dynamics, and constrained trajectory planning—where systems 

reconfigure themselves in response to both excess and scarcity to optimize performance under 

changing conditions (Sussillo & Abbott, 2009; Wang, 2002; Churchland et al., 2012). 

6.2.4.3 Neuroplastic Potential 

The total amount of energy the system invests in reconfiguring its cognitive architecture 

can be described by integrating the reallocation function across the range of energy available for 

adaptation, given by 
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|𝐸CRR(𝑡)| = |∫ 𝑅CRR(𝑇, 𝐸A)⁡𝑑𝐸
𝐸A(𝑡)

0

|. 

This expression captures the extent of energetic reallocation in a cognitive system, but 

not whether that reallocation was functionally constructive or destructive. To assess the 

qualitative impact of plasticity, CRT introduces the neuroplastic potential defined as 

𝑁𝑃(𝑡) ≡ 𝐹CRA(𝑡) − 𝐹CRR(𝑡). 

This quantity reflects the net change in free energy resulting from cognitive reallocation. 

If 𝑁𝑃(𝑡) > 0, then CRR reduces the system’s free energy, indicating constructive plasticity—

such as integration, upregulation, or the formation of more efficient neural pathways. However,  

if 𝑁𝑃(𝑡) < 0 then then CRR increases the system’s free energy, suggesting destructive 

plasticity, such as pruning, downregulation, or loss of redundant pathways. 

Both forms of plasticity are adaptive. Constructive plasticity enables improved task 

performance and long-term robustness, while destructive plasticity conserves resources and 

streamlines cognitive architecture. CRT treats neuroplastic potential as a continuous, 

energetically grounded indicator of how the brain reorganizes itself under constraint. 

6.2.4.4  Thermodynamic Definition of Cognitive Temperature 

In CRT, cognitive temperature is defined with respect to a structurally constrained 

subspace 𝑉 which represents the anatomical substrate actively supporting a given cognitive 

process. This subspace is defined as the combined volume of the engaged regions and the white 

matter pathways linking them. For example, consider a visuomotor decision task that recruits the 

superior occipital gyrus (SOG) and superior parietal lobule (SPL) to support the integration of 

motion trajectories, as we investigated in Chapter 3. 
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 In such a case, V can be approximated as the sum of the volumes of SOG and SPL, 

along with the intervening white matter tracts that carry information between them. Given 

the physical separation between these regions, white matter pathways are likely the 

dominant structure of interaction—minimizing the role of direct gray matter continuity or 

gap junction coupling. This  task-defined subspace serves as the bounded domain over which 

energy, entropy, and reallocation dynamics are evaluated. It reflects the subset of brain structure 

that is both anatomically viable and functionally engaged at a specific moment in time. 

Within this subspace, the number of active cognitive units is represented by 𝑁 which 

denotes the total count of participating units such as neurons, synapses, or glial elements. In 

practice, the number of active cognitive units can be approximated using structural neuroimaging 

data. For example, if tractography reveals that a task engages the left superior occipital gyrus 

(SOG) and left inferior parietal lobule (IPL), we can estimate N  by combining the anatomical 

volumes of these two regions with information about the white matter tracts that connect them.  

The voxel counts or measured volumes of gray matter regions serve as an approximate index of 

local tissue volume and, by extension, of the potential number of neurons, glial cells, and 

synaptic connections within each area. While this approach does not yield precise cellular 

counts, it offers a coarse-grained proxy for estimating the structural capacity of a region to 

support cognitive function, especially when interpreted in conjunction with known cortical 

thickness and cytoarchitectonic profiles from anatomical atlases.  

Tractography data would serve as a proxy for the number and density of streamlines 

linking the two regions—provides an estimate of how many long-range connections are likely 

active during task performance.  As with any tractography-based analysis, it’s important to be 

mindful of methodological details. Streamline counts are influenced by factors such as seeding 
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strategy and tracking parameters, so their interpretation should always be grounded in the context 

of the specific analysis. In our analysis in Chapter 3, described in Section 3.1.1.2, we used a 

seed-based approach to localize tractography to task-relevant regions—specifically to avoid 

imposing assumptions about what N  “should be.” Instead, we allowed the data to guide the 

analysis, using seeding to explore pairwise links within a well-defined cognitive subspace. While 

streamline counts in this context are not absolute, they still serve as a useful proxy for estimating 

connectivity strength and, by extension, the number of active cognitive units. 

This level of interpretive care is consistent with best practices in neuroimaging and 

reflects the kind of methodological transparency expected in well-conducted studies. 

Although this approach does not directly count individual neurons or axons, it provides a 

principled and empirically grounded way to approximate the size of the system engaged during a 

given cognitive process. Just as importantly, it keeps the CRT framework practical, transparent, 

and accessible to researchers working with standard imaging data. 

For any given momentary configuration, the system can be treated as a dynamic 

equilibrium, which is effectively stable. This permits a well-defined partial derivative and allows 

cognitive temperature, 𝑇𝐶𝑅𝑇 to reflect the system’s capacity to effectively allocate resources to 

support a cognitive process across a given cognitive subspace. Over longer timescales, 

neuroplastic changes across the nervous system in general may update both V and N, but such 

shifts occur outside the local thermodynamic frame used to define an instantaneous cognitive 

temperature. The physiological plausibility is well founded with respect to modern understanding 

of brain temperature, which is known to be susceptible to local fluctuations (Kiyatkin, 2019; 

Wang et al., 2014).  Cognitive temperature 𝑇𝐶𝑅𝑇 is  thus defined as 𝑇𝐶𝑅𝑇 ⁡ ≡ 𝑇(𝑡)⁡, reflecting a 

global parameter that modulates cognitive processes. The thermodynamic expression for  𝑇𝐶𝑅𝑇  is 
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given by the canonical thermodynamic expression as a partial derivative of  a cognitive system’s 

internal energy with respect to its entropy while V and 𝑁 are held constant   

𝑇CRT = (
𝜕𝑈CRT

𝜕𝑆CRT
)
𝑉,𝑁

, 

where 𝑈𝐶𝑅𝑇 is the internal energy of the cognitive system and 𝑆𝐶𝑅𝑇 is its entropy. 

6.2.4.5 Partition Function in CRT  

In CRT, cognitive temperature 𝑇CRT⁡is defined as a physical quantity which is aligned 

with the first postulate of CRT which treats cognitive systems as a physical system from its 

construction. Formal treatment of how cognitive temperature CRT-governed thermodynamics is 

discussed in Section 6.2.4.2. Accordingly, all thermodynamic expressions retain Boltzmann’s 

constant: 𝛽 =
1

𝑘𝐵𝑇CRT
 . In theoretical contexts 𝑘𝐵 is often set to 1 for simplicity, but it is retained 

here to preserve accuracy. At rest, a cognitive system occupies cognitive states probabilistically, 

like any other physical system, with each state’s likelihood determined by its energetic cost 𝐸𝑖 

and a cognitive temperature parameter 𝑇. This yields a Boltzmann distribution that defines a 

cognitive state in Cognitive Resource Theory (CRT) as 

⁡⁡⁡⁡⁡𝑃𝑖 =
𝑒−𝛽𝐸𝑖

𝑍𝐶𝑅𝑇
,  𝑍𝐶𝑅𝑇 = 𝑇𝑟(𝑒−𝛽�̂�𝐶𝑅𝑇) 

where Tr is denotes the trace  which a mathematical operation that means taking a sum over all 

possible cognitive states. Specifically, this involves adding up the contributions of each state 

along the diagonal of the matrix representation of the system given by �̂�—each corresponding to 

a distinct energy for every possible cognitive state. The Hamiltonian is expressed as an operator 

(denoted by the hat), its role in this context is simply to assign an energy to each possible 

cognitive configuration. This ensures that the resulting probabilities are properly normalized.  
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Here, 𝑃𝑖⁡𝑖𝑠 the probability for a given cognitive system of occupying a given state with energy 

𝐸⁡𝑖⁡, is equivalent to �̂�𝐶𝑅𝑇,⁡⁡⁡𝑖 —the value of the CRT Hamiltonian evaluated at a given state i state 

evaluated the same way as described in Section 6.2.3.  Higher-energy states  are exponentially 

suppressed, and the normalization constant⁡𝑍𝐶𝑅𝑇 known as the partition function, encodes the 

total energetic weight of all accessible cognitive states under CRT dynamics.   

In CRT, the total Hamiltonian is constructed as a sum of its CRA and CRR components 

under the first law of thermodynamics 

�̂�𝐶𝑅𝑇 ⁡ = ⁡ �̂�𝐶𝑅𝐴 ⁡⁡+ ⁡ �̂�𝐶𝑅𝑅.⁡ 

This reflects the idea that the system’s total energy includes both baseline allocation 

�̂�𝐶𝑅𝐴⁡and dynamic reallocation �̂�𝐶𝑅𝑅. Since these contributions are defined over the same set of 

possible cognitive states. This allows the partition function to be cleanly factorized into separate 

CRA and CRR terms as shown by 

𝑍CRT = ∑exp(−𝛽𝐻CRA,𝑖) ⋅ exp(−𝛽𝐻CRR,𝑖)

𝑖

= 𝑍CRA ⋅ 𝑍CRR. 

6.2.4.6  Thermodynamic Definition of Cognitive Entropy 

CRT interprets this entropy not as a purely informational abstraction but as a physically 

embodied measure of thermodynamic inefficiency. 

 The Von Neumann entropy quantifies internal uncertainty or dispersion within a cognitive 

system, introduced in Section 6.2.4.1 as 

𝑆CRT = −Tr(𝜌𝐶𝑅𝑇ln 𝜌𝐶𝑅𝑇)  , 

where 𝜌𝐶𝑅𝑇 is the system’s density matrix, encoding the probabilistic distribution over cognitive 

states. The challenge, then, is to construct a physically plausible expression for 𝜌𝐶𝑅𝑇  the 

system’s density matrix. Two formulations are presented to address this. The first is a minimal 
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model in which both CRA and CRR are represented as paramagnets, resulting in a fully 

separable and computationally efficient system. The second is a more expressive model in which 

CRA remains a paramagnet, while CRR is modeled using an Ising-like interaction term to 

account for coupling and synchrony between cognitive units. In each case, the full CRT 

Hamiltonian is defined explicitly, followed by the corresponding expressions for the density 

matrix and partition function.  

In the simplest possible case, CRA and CRR are each modeled as paramagnets—non-

interacting systems in which cognitive regions behave independently. The CRA and the CRA 

and CRR Hamiltonians are assumed to commute, allowing the total entropy𝑆CRT  to be additive, 

with each region contributing independently to the system’s entropy. 

Each region contributes a set of local energy terms, resulting in a fully diagonal Hamiltonian 

𝐻CRT = ∑ (𝐻𝑖
CRA + 𝐻𝑖

CRR)𝑠𝑖𝑖 , 

where 𝑠𝑖 ∈ {−1,+1} represents whether cognitive region i is energetically active (+1) or inactive 

(–1), following conventions from spin-based models in physics.  

For example, in the visuomotor decision network described in Chapter 3, the superior occipital 

gyrus (SOG) and superior parietal lobule (SPL) would each correspond to spin variables 𝑠SOGand 

𝑠SPLencoding their activation states during task engagement. The corresponding density 

matrix would then be given by 

𝜌CRT =
1

𝑍CRT
𝑒𝑥𝑝 [−𝛽 ∑(𝐻𝑖

CRA + 𝐻𝑖
CRR)𝑠𝑖

𝑖

] 

where β =
1

𝑘𝐵𝑇CRT
, with 𝑇CRTdenoting the cognitive temperature and 𝑘𝐵 is the Boltzmann 

constant. 𝑍CRT is the CRT partition function described as 
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𝑍CRT = ∑exp [−𝛽 ∑(𝐻𝑖
CRA + 𝐻𝑖

CRR)𝑠𝑖

𝑖

] .

{𝑠𝑖}

 

This formulation is computationally efficient and analytically separable. It is a physically 

plausible model of a density matrix that would yield CRT entropy, though it assumes regional 

independence and does not account for task-driven coordination or synchrony. 

To incorporate empirically grounded features such as synchrony, phase-locking, and 

interregional coordination, CRR is instead modeled using an Ising-like structure. In this 

formulation, CRA remains diagonal, based on the assumption that baseline cognitive states are 

separable. Without separability, the cognitive system could not be described by a Hamiltonian, 

which would violate the first postulate of CRT, as defined in Section 6.2.1.1. Under this model, 

no assumption is made regarding the commutativity between the Hamiltonians of CRA and 

CRR. 

To incorporate empirically grounded features such as synchrony, phase-locking, and 

interregional coordination, CRR is instead modeled using an Ising-like structure. In this 

formulation, CRA remains diagonal, based on the assumption that baseline cognitive states are 

separable. Without separability, the cognitive system could not be described by a Hamiltonian, 

which would violate the first postulate of CRT, as defined in Section 6.2.1.1. Under this model, 

no assumption is made regarding the commutativity between the Hamiltonians of CRA and 

CRR. 

The Ising model was originally developed in statistical physics to explain 

ferromagnetism—specifically, how simple local interactions between neighboring atomic spins 

could give rise to large-scale, collective magnetic order (Brush, 1967). In the context of CRT, 

this same structure offers a principled way to model coordinated neural reallocation under 

energetic constraint. Just as the Ising model captures emergent global behavior from simple local 
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couplings between binary spin states, CRT must account for the emergence of coordinated, 

large-scale cognitive patterns from local interactions between distributed neural units. This same 

structure offers a principled way to model coordinated neural reallocation under energetic 

constraint, reflecting the parallel challenge CRT faces in formally describing emergent order 

within the brain. 

Empirically, structured neural synchrony is observed across multiple scales—from spike-

timing correlations in Hodgkin–Huxley dynamics, to long-term potentiation (LTP) in Hebbian 

plasticity, to mesoscopic neural field models such as the Wilson–Cowan framework. To reflect 

these interaction-based processes, CRR introduces coupling between cognitive units via pairwise 

terms—an abstraction that not only models but aligns with the empirically observed synchrony, 

coordination, and emergent dynamics that characterize real neural systems during episodes of 

cognitive strain and realignment. The corresponding Hamiltonian is expressed as 

𝐻CRT = ∑𝐻𝑖
CRA𝑠𝑖

𝑖

− ∑𝐻𝑖𝑗
CRR𝑠𝑖𝑠𝑗

𝑖<𝑗

 

where 𝑠𝑖 ∈ {−1,+1}  as before. Here  𝐻𝑖𝑗
CRR⁡represents the pairwise interaction energy between 

cognitive units i and j, introduced by CRR during episodes of resource reallocation. Positive 

values of 𝐻𝑖𝑗
CRRreflect energy-reducing co-activation (e.g., functional synchrony), while negative 

values reflect competitive or desynchronized dynamics. This term captures the structured 

dependencies that arise during resource reallocation. The beta parameter 𝛽 is unchanged.  The 

density matrix, under this model is expressed as 

𝜌CRT =
1

𝑍CRT
𝑒𝑥𝑝(−𝛽 [∑𝐻𝑖

CRA𝑠𝑖

𝑖

− ∑𝐻𝑖𝑗
CRR𝑠𝑖𝑠𝑗

𝑖<𝑗

]). 

 The partition function 𝑍CRT is now expressed as  
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𝑍CRT = ∑exp(−𝛽 [∑𝐻𝑖
CRA𝑠𝑖

𝑖

− ∑𝐻𝑖𝑗
CRR𝑠𝑖𝑠𝑗

𝑖<𝑗

]) .

{𝑠𝑖}

 

This provides a physically grounded basis for computing cognitive entropy in CRT under 

an Ising model formulation of CRR. 

6.2.5  CRT as a Physically Grounded Extension of The Free Energy Principle  

The Free Energy Principle offers an information-theoretic account of inference in the 

brain, wherein cognition minimizes a variational free energy functional (Friston, 2010) 

ℱ = 𝐷KL[𝑞(𝑠)|𝑝( 𝑠 ∣ 𝑜 )] − 𝐸𝑞(𝑠)[log 𝑝 ( 𝑜 ∣ 𝑠 )]. 

Here, the first term 𝐷KL[𝑞(𝑠)|𝑝( 𝑠 ∣ 𝑜 )] is the “Kullback–Leibler divergence”, a measure of how 

far the brain’s internal model 𝑞(𝑠)⁡deviates from the ideal Bayesian posterior probability 

𝑝( 𝑠 ∣ 𝑜 )⁡. The latent causes or hidden states of the environment that the brain attempts to infer is 

given by “s” represents latent causes and “o” represents sensory inputs or observed outcomes. 

The KL divergence term is defined as 

𝐷KL[𝑞(𝑠)|𝑝( 𝑠 ∣ 𝑜 )] ≡ ∑𝑞(𝑠)

𝑠

log
𝑞(𝑠)

𝑝( 𝑠 ∣ 𝑜 )
 

which can be expanded to show its decomposition into entropy and cross-entropy terms given by 

𝐷KL[𝑞(𝑠)|𝑝( 𝑠 ∣ 𝑜 )] = −𝐻[𝑞(𝑠)] − ∑𝑞(𝑠)

𝑠

log 𝑝 ( 𝑠 ∣ 𝑜 ). 

 𝐻[𝑞(𝑠)] = −∑ 𝑞(𝑠)𝑠 log 𝑞 (𝑠) is Shannon entropy of the brain's belief distribution denoted by 

𝑞(𝑠). The second term of ℱ, 𝐸𝑞(𝑠)[log 𝑝 ( 𝑜 ∣ 𝑠 )] is the expected log-likelihood, or the expected 

causal evidence the brain assigns to the observation under its current beliefs of expected 

outcomes⁡𝐸𝑞(𝑠)  regarding the likelihood of the observations o, given those causes.  Minimizing 
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ℱ aligns internal beliefs with external data, reducing surprise. As (Friston, 2010)notes, the free 

energy can also be expressed as the negative log “model evidence” minus the Shannon entropy 

of the “recognition density” which is given by 

ℱ = −𝐸𝑞(𝑠)[log 𝑝 (𝑜, 𝑠)] + 𝐸𝑞(𝑠)[log 𝑞 (𝑠)]. 

This form directly parallels the Helmholtz free energy identity where the first term 

corresponds to internal energy and the second to entropic cost. In CRT, the same trajectory can 

be followed by reformulating the cognitive dynamics in energy terms, ultimately arriving at a 

direct analog to the Helmholtz free energy identity 𝐹 = 𝑈 − 𝑇⁡𝑆.   

6.2.5.1 CRT Parallels with the Free Energy Principle in the High-Resource Limit 

Cognitive Resource Theory (CRT) was developed independently of the Free Energy 

Principle (FEP), with its foundations rooted in thermodynamics and physical systems modeling. 

It was only after the core structure of CRT had been established that connections to FEP were 

recognized, revealing convergent themes despite distinct theoretical origins. CRT was not 

constructed with the intent to incorporate the full Bayesian logic central to FEP, nor does it go 

out of its way to attempt to do so. FEP frames cognition as a process of variational inference 

under uncertainty, where surprise is minimized through continuous updating of internal beliefs 

(Friston, 2010). CRT, in contrast, focuses on how adaptive cognition is physically possible. It 

models cognition as a thermodynamically governed system, where available energy, entropy 

gradients, and structural constraints determine the feasibility and direction of resource 

reallocation. Recent work has emphasized the thermodynamic cost of belief updating under 

metabolic constraint (Fields et al., 2024), reinforcing the importance of frameworks that embed 

cognitive processes within physical systems. CRT addresses this need by explicitly incorporating 
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energy availability and entropy production into its governing equations, thus offering a 

thermodynamic foundation for adaptation and plasticity. 

In the high-resource limit—where cognitive state distributions are fully separable and 

optimized—the reallocation function of CRR is effectively zero and the system’s density matrix 

approaches a diagonal form captured by its entropy modeled as a paramagnet see Section 6.2.4.6. 

CRT and FEP align in their goals seeking minimal free energy states, albeit from different 

starting assumptions. FEP offers deep insight into probabilistic inference and model updating, 

while CRT focuses on the thermodynamic conditions that govern when and how such inference 

processes are energetically supported offering a physically grounded extension. 

Together, these complementary frameworks offer a richer perspective of cognitive 

adaptation—unifying probabilistic reasoning and physical resource dynamics within a broader 

framework of physically grounded cognitive function. How CRT may further interface with FEP 

remains an exciting topic for further investigation. 

6.2.6  Lagrangian and Path Integral Formulation of CRT 

Physical systems tend to evolve along paths that minimize a quantity known as action—a 

measure of the system’s total energetic expenditure over time. This principle, formally referred 

to as the principle of stationary action forms the 2nd postulate of CRT and is more commonly 

known as the principle of least action, both because minimization is the typical case and because 

the phrasing is more intuitive. The concept aligns with everyday metaphors like “following the 

path of least resistance” or “going with the flow”—expressions that echo nature’s preference for 

efficient trajectories. In physics, this principle provides a powerful framework for understanding 

how dynamic systems behave under constraint. To capture this formally, CRT defines an action 
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functional, which quantifies how costly a given pattern of cognitive reallocation would be. The 

brain then follows the trajectory that minimizes this quantity, yielding the most energetically 

favorable path given current constraints. 

To model cognitive processes as physically grounded dynamical systems, we define a 

Lagrangian for the evolution of cognitive state variables given by generalized coordinates 𝑞⁡ 

which correspond to the degrees of freedom a cognitive system can take while remaining 

physically lawful. The baseline dynamics are still governed by CRA which defines a minimal-

energy trajectory. Deviations from this baseline—are mitigated by CRR which modulates energy 

flow across subsystems. The cognitive configuration space 𝒬  consists of all possible trajectories 

the brain can take through its set of physiological degrees of freedom including both functional 

activations and anatomical constraints. Each coordinate 𝑞⁡𝜖⁡𝑄⁡represents the activation state of a 

neural population actively engaged in a cognitive task at some given time, t —such as an ROI, a 

node in a functional network, or a localized circuit supporting perception, attention, or some 

other cognitive function. The rate of change �̇� captures how quickly that activation shifts over 

time, and may correspond to observable dynamics such as fluctuations in the frequency content 

of a BOLD (blood oxygenation level dependent) or electrophysiological time series. Together, 𝑞 

and �̇�  describe the system’s evolving trajectory through cognitive state space. This trajectory 

reflects both the brain’s intrinsic dynamics (governed by CRA) and task-evoked adjustments 

(modulated by CRR), defining how cognitive systems reconfigure themselves to remain 

energetically viable and functionally effective. To formalize these dynamics, we define the CRT 

Lagrangian as the sum of a baseline term provided by CRA and a perturbation term introduced 

by CRR  

ℒ𝐶𝑅𝑇(𝑞, �̇�, 𝑡) = ℒ𝐶𝑅𝐴(𝑞, �̇�) + 𝜀𝑅𝐶𝑅𝑅(𝑞, �̇�, 𝑡), 
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where ℒ𝐶𝑅𝐴(𝑞, �̇�, 𝑡) =
1

2
𝑞2̇ − 𝑉(𝑞(𝑡))  is the CRA Lagrangian. The function 𝑉(𝑞(𝑡)), represents 

the potential energy associated with the system’s current configuration. Although it formally 

depends on time, it is standard practice to express this simply as 𝑉(𝑞) with the time dependence 

understood implicitly.  𝑅𝐶𝑅𝑅(𝑞, �̇�, 𝑡) is a perturbation term encoding task-induced reallocation 

demands, and ε is the perturbation coefficient,  representing the strength of CRR influence. The 

Euler–Lagrange equation is simply how you derive the equations of motion from a Lagrangian. 

At its core, it’s an upscaled, generalized version of Newton’s second law 𝐹⁡ = ⁡𝑚𝑎⁡ that applies 

not just to particles but to any dynamic system evolving over time. In Cognitive Resource 

Theory (CRT), it describes how a cognitive brain network evolves through its high-dimensional 

configuration space in a way that balances energetic cost, internal stability, and external task 

demands. Under real-world constraints, CRT models this evolution as a constrained dynamical 

system—one in which cognitive trajectories are shaped by limitations in energy availability and 

the brain’s anatomical and physiological constraints. The Euler–Lagrange equation for CRT, 

under energetic constraints, takes the form of a constrained dynamical system 

(
∂ℒ𝐶𝑅𝑇

∂�̇�
) −

∂ℒ𝐶𝑅𝑇

∂𝑞
= λ

∂ϕ(𝑞, �̇�, 𝑡)

∂𝑞
. 

In CRT, cognitive friction⁡𝜙 quantifies the energetic mismatch between a system’s 

current trajectory through cognitive configuration space and the baseline energetic capacity 

available for task performance. This means 𝜙 quantifies the energetic heat induced by some 

cognitive task straining the system and is formally defined as 

𝜙(𝑞, �̇�, 𝑡) = D(𝑞2)̇ − 𝐸CRA(𝑡), 

where 𝐷(�̇�) is the Rayleigh dissipation function, encoding anisotropic resistance across 

cognitive subsystems. 
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 This dissipation function is denoted as 

𝐷(�̇�) =
1

2
∑∑ 𝐶𝑗𝑘�̇�𝑗�̇�𝑘.

𝑚

𝑘=1

𝑚

𝑗=1

 

The matrix⁡𝐶𝑗𝑘 are constants that are related to the damping coefficients governing  the coupling 

strength or reconfiguration cost between cognitive components 𝑞𝑗⁡and 𝑞𝑘 in the system’s 

configuration space. Cognitive friction is minimized when the system is operating efficiently — 

i.e., when dissipation matches available cognitive energy: 𝐷⁡ = ⁡𝐸𝐶𝑅𝐴. The baseline  𝐸𝐶𝑅𝐴⁡(𝑡) is 

energetic capacity available for cognitive action, as defined by the CRA at time 𝑡. 

When ⁡𝐷 > ⁡𝐸𝐶𝑅𝐴 the resulting cognitive friction induces a deviation from minimal-action 

trajectories in cognitive state space, which the system counteracts through CRR by realigning 

with a configuration better suited to mitigate the energetic costs of navigating tasks with high 

expected cognitive demands.  More generally, λ(t) functions as a constraint multiplier that 

modulates cognitive reallocation in response to both cognitive load and thermodynamic 

conditions. This formulation unifies proactive energy allocation and reactive adaptation under a 

single mathematical framework. 

The constraint multiplier λ(𝑡) is defined as a function that combines both energetic and 

entropic gradients in cognitive configuration space. It is shaped by gradients in the system’s 

energy landscape and local entropy, capturing how internal dynamics respond to task demands 

and uncertainty. Specifically, it is given by the expression 

λ(𝑡) = α ⋅ ∇𝑞𝐸(𝑞, 𝑡) + β ⋅ ∇𝑞𝑆CRT(𝑞, 𝑡). 

The first term ∇𝑞𝐸(𝑞, 𝑡) captures how the gradient of cognitive energy varies with respect to this 

coordinate, reflecting the system’s sensitivity to task-related energetic demands. The second term 

and ∇𝑞𝑆CRT(𝑞, 𝑡) quantifies the gradient of CRT-defined entropy, characterizing how internal 
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uncertainty or representational dispersion shifts across the configuration space. The coefficients 

α⁡⁡encodes energy-driven reallocation (task-load sensitivity), while β encodes sensitivity to 

entropy-driven demands, such as internal conflict or ambiguity.  

6.2.6.1 Legendre Transformation from Lagrangian to Hamiltonian 

To unify the Lagrangian and Hamiltonian formulations of CRT, we apply the Legendre 

transform, and we set the effective mass to unity, 𝑚 = 1, to simplify the kinetic term. Starting 

from the total Lagrangian, 

ℒ𝐶𝑅𝑇(𝑞, �̇�, 𝑡) = ℒ0(𝑞, �̇�) + 𝜀𝑅𝐶𝑅𝑅(𝑞, �̇�, 𝑡),  

the canonical momentum is denoted as 

𝑝 =
𝜕ℒ𝐶𝑅𝑇

𝜕�̇�
= �̇� + 𝜀

𝜕𝑅𝐶𝑅𝑅

𝜕�̇�
. 

The  Hamiltonian is then obtained by the Legendre transform given by 

𝐻𝐶𝑅𝑇(𝑞, 𝑝, 𝑡) = 𝑝�̇� − ℒ𝐶𝑅𝑇(𝑞, �̇�, 𝑡). 

Substituting 𝑞˙ = 𝑞˙(𝑝), we can then write the Hamiltonian as 

𝐻𝐶𝑅𝑇(𝑞, 𝑝, 𝑡) =
1

2
𝑝2 + 𝑉(𝑞) + 𝜀𝑅𝐶𝑅𝑅(𝑞, 𝑝, 𝑡). 

This confirms that the reallocation term 𝑅𝐶𝑅𝑅, while originally velocity-dependent, can be recast 

in terms of canonical coordinates, and validates its appearance in the Hamilton–Jacobi equation 

given by 

𝜕𝑆𝐶𝑅𝑇

𝜕𝑡
+

1

2
(
𝜕𝑆𝐶𝑅𝑇

𝜕𝑞
)
2

+ 𝑉(𝑞) + 𝜀𝑅𝐶𝑅𝑅(𝑞, 𝑡) = 0. 

Here, 𝑆𝐶𝑅𝑇 = 𝑆(𝑞, 𝑡) is the action of the CRT system. The purpose of this exercise was to 

demonstrate that both the Lagrangian and Hamiltonian formulations of CRT represent the same 

physical system, and by deriving a clear expression for the Hamilton–Jacobi equation, we have 

achieved that objective. 
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6.2.6.2 Path Integral Representation of Cognitive Resource Dynamics 

In the Lagrangian representation of CRT  neural adaptation involved with some cognitive 

process can be modeled as a probabilistic trajectory through state space. These trajectories are 

governed not only by baseline energetics but also by transient reallocations induced by CRR. To 

capture this, we define a path integral over cognitive histories described by the generalized 

coordinate describing the degrees of freedom, q(t), incorporating both CRA and CRR 

components into the total action. This treats cognitive adaptation as a superposition of possible 

trajectories, each weighted by its energetic cost. In the classical limit, the dominant trajectory 

minimizes the action, producing efficient yet constrained cognitive responses. The path integral 

over Dq(t) sums over all cognitively plausible trajectories, with each trajectory weighted by an 

exponential kernel derived from the CRT action. This kernel reflects the energetic cost of the 

path, encoding the system’s probabilistic preference for efficient reallocation. To describe such a 

path integral representation for possible paths a cognitive system might take and expectation of 

observable quantities based on this these possible paths, we must first describe the CRT partition 

function 𝑍 which is denoted by   

𝑍(𝑞) = ∫𝐷𝑞(𝑡) 𝑒
𝑖

ℏ
𝑆𝐶𝑅𝑇[𝑞(𝑡)]

,     

where the CRT action 𝑆𝐶𝑅𝑇[𝑞(𝑡)] is expressed as 

𝑆𝐶𝑅𝑇[𝑞(𝑡)] = ∫𝑑𝑡  (ℒ0(𝑞, �̇�) + ε𝑅𝐶𝑅𝑅(𝑞, �̇�, 𝑡)). 

While CRT adopts the formal machinery of action-based dynamics (e.g., path integrals, 

partition functions), the CRT action  𝑆𝐶𝑅𝑇[𝑞(𝑡)]⁡has not yet been derived from fundamental 

fields. Instead, it is a phenomenological action defined over cognitive configuration space, 

encoding energetic, entropic, and relevant constraints. A full physical correspondence between 
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CRT and formal field-theoretic Lagrangians would require an explicit mapping of cognitive 

operators onto fundamental fields, a task that lies well beyond the scope of this dissertation.  

In formalizing CRT, we adopt the convention of natural units by setting the reduced 

Planck’s constant to unity (ℏ = ⁡1).⁡ In this context, this reflects a move to natural units to 

simplify and generalize the structure of cognitive path weighting.  By doing so, action and phase 

become dimensionless, allowing cognitive dynamics to be expressed more cleanly in terms of 

relative influence and path weights, rather than absolute units. This convention enables the 

partition function 𝑍 to take the form 

𝑍 = ∫𝐷𝑞(𝑡) 𝑒𝑖𝑆𝐶𝑅𝑇[𝑞(𝑡)], 

which allows calculation of expected values of observables ⟨𝒪[𝑞(𝑡)]⟩ given by 

⟨𝒪[𝑞(𝑡)]⟩ =
1

𝑍
∫𝐷𝑞(𝑡)  𝒪[𝑞(𝑡)] 𝑒𝑖𝑆CRT[𝑞(𝑡)]. 

Examples of  ⟨𝒪[𝑞(𝑡)]⟩ include ℰ which is the expected energetic cost of a trajectory; maps to 

task difficulty or neural efficiency, ρ𝑖𝑗 which is a scalar measure of connection strength between 

brain regions i and j (e.g. FC, dFC, SC), T which is expected cognitive temperature across all 

trajectories and 𝐽[𝑞(𝑡)] = 𝑆𝑚𝑎𝑥 − 𝑆[𝑞(𝑡)] which describes “negentropy” or rather entropy 

reduction from a maximal baseline. Negentropy quantifies internal structure or representational 

precision gained along a trajectory. As an example how to calculated an expectation value under 

this formalism, consider the expected energetic cost ℰ[𝑞(𝑡)] of executing some cognitive task. 

To do this, we write the energy functional as 

ℰ[𝑞(𝑡)] = ∫𝑑𝑡 (
1

2
𝑞2̇ + 𝑉(𝑞) + ϵ𝑅𝐶𝑅𝑅(𝑞, �̇�, 𝑡)), 

then the expression, 

⟨ℰ⟩ =
1

𝑍
∫𝐷𝑞(𝑡) [∫ 𝑑𝑡 (

1

2
𝑞2̇ + 𝑉(𝑞) + ϵ𝑅𝐶𝑅𝑅(𝑞, �̇�, 𝑡))] 𝑒𝑖𝑆𝐶𝑅𝑇[𝑞(𝑡)], 
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yields the expected energy which quantifies the average cost the system will expend across all 

feasible cognitive paths when engaging with a given task or decision. Other functionals, such as 

expected entropy, action complexity, or directional connectivity, can be similarly derived within 

this framework. Critically, the support of the path integral, which corresponds to trajectories that 

contribute to the value of an observable, ⟨𝑂⟩, is shaped by the structure of 𝑆𝐶𝑅𝑇[𝑞(𝑡)]. From this 

foundation, the CRT partition function encodes not only optimal strategies but the full 

probability-weighted distribution of trajectories that a cognitive system could take under real-

world constraints. In the absence of strenuous task demands, CRA governs minimal-effort 

cognitive dynamics along energy-efficient paths. In response to strain—such as increased task 

complexity, time pressure, or novelty—CRR reallocates energy to meet the system’s expected 

energetic demands. This shifts the system’s trajectory away from baseline and into a new region 

of state space, governed by the modified Lagrangian. 

 In traditional path integral formulations, any multiplicative constant 𝑐 it is possible in 

future extensions to introduce a normalization constant c, analogous to a global scaling factor 

over the space of cognitive trajectories. In traditional path integral formulations, such constants 

are typically absorbed into the normalized partition function 𝑍. However, within CRT, we allow 

for the possibility that such a scaling factor may carry theoretical or biological significance—

potentially encoding baseline cognitive resolution, neuromodulatory tone, or inter-individual 

differences in resource sensitivity. While this constant is not explicitly modeled here, its 

inclusion could provide a future renormalization-parameter for individual variability in CRT 

dynamics. 
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6.2.7   Predictive Validity of CRT: Sleep–Wake Energetics and Neuroplasticity 

To validate the empirical grounding of Cognitive Resource Theory (CRT) beyond the 

dataset investigated in this dissertation, a canonical neural contrast between the transition 

between sleep and wakefulness was examined.  

In CRT, the Cognitive Resource Allocator (CRA) defines the brain’s baseline internal 

energy configuration, shaped by metabolic efficiency, energetic stability, and homeostasis. When 

task demands or uncertainty strain this baseline capacity, the Cognitive Resource Reallocator 

(CRR) initiates adaptive reallocation, shifting energy toward relevant systems and 

downregulating inefficient processes as an investment to more effectively meet environmental 

demands and relieve internal cognitive friction. This reallocation incurs a thermodynamic cost, 

modeled as a deviation from the CRA-defined baseline. 

The formal structure of CRT is captured by the expressions: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐻𝐶𝑅𝑇 = 𝐻CRA + ε𝑅𝐶𝑅𝑅(𝑇, 𝐸A),⁡⁡⁡⁡⁡⁡⁡⁡(1)⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝐶𝑅𝑅(𝑇, 𝐸A) = −
∂𝐹𝐶𝑅𝑅

∂𝐸A
⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡⁡⁡⁡⁡𝐸A = 𝐸total⁡ − 𝐸CRA − 𝐸L⁡.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3)                  

Equation (1) defines total cognitive energy expenditure as the sum of the baseline 

energetic load (CRA) and a context-sensitive reallocation cost (CRR). Equation (2) links the 

reallocation rate to the gradient of a free energy function 𝐹𝐶𝑅𝑅 , introducing a thermodynamic 

cost landscape that governs reallocation efficiency. Equation (3) defines the energy pool 

available for CRR⁡⁡⁡𝐸A after accounting for baseline and biologically locked energy (e.g., 

maintenance of vital systems, homeostasis). 
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From these definitions, we derive 

𝐸CRR = ∫ 𝑅CRR(𝑇, 𝐸A)𝑑
𝐸A

0
𝐸 = −∫

𝑑𝐹CRR

𝑑𝐸

𝐸A⁡

0
𝑑𝐸, 

⇒ 𝐸CRR = 𝐹CRR(0) − 𝐹CRR(𝐸A⁡). 

Therefore, if 𝐸CRA
wake⁡ > 𝐸CRA

sleep⁡
,⁡⁡then ⁡⁡𝐸CRR

sleep⁡
> 𝐸CRR

wake⁡. 

This result predicts that a lower baseline energy expenditure increases the energy 

available for dynamic reallocation, thereby enabling greater plasticity through CRR. Since the 

integral form expression for⁡𝐸CRR holds for any allowable value of⁡⁡𝐸A,⁡this result is general and 

does not depend on the specific value of 𝑅CRR. Comparing this theoretical prediction to what is 

known in the literature, we note that empirical findings have reported that brain energy 

expenditure during non-rapid eye movement (NREM) sleep is known to decrease to 

approximately 85% of its waking value  (DiNuzzo & Nedergaard, 2017).  

This aligns precisely with⁡𝐸CRA
wake⁡ > 𝐸CRA

sleep⁡
 , since⁡𝐸CRA is defined by its construction as 

the brain’s baseline internal cognitive energy. Therefore, a drop in the brain’s internal energy 

expenditure maps to the subset of internal energy available for baseline cognitive function.  

Furthermore, the NREM sleep state has been consistently associated with enhanced neural 

plasticity relative to wakefulness (Nissen et al., 2021), which aligns precisely with CRT’s 

prediction that a greater amount of energy should be available for CRR reconfiguration during 

sleep, ⁡𝐸CRR
sleep⁡

> 𝐸CRR
wake⁡, to facilitate neuroplastic adaptations that improve overall system 

configuration in response to cognitive friction induced by task-related strain under current 

baseline CRA support.  
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6.2.8  Summary of Cognitive Resource Theory 

The Cognitive Resource Theory (CRT) framework unifies physical energetics, neural 

architecture, and cognition into a single, testable formalism. It models baseline and adaptive 

processes through Cognitive Resource Allocation (CRA) and Cognitive Resource Reallocation 

(CRR), and has empirical support in both observed neural adaptations associated with long-term 

action video game experience within the dataset investigated in this dissertation , and real-world 

phenomena outside this dataset, such as sleep–wake cycles. 

From this perspective, the brain functions as a variational system constrained by 

thermodynamic costs, continuously navigating a dynamic cognitive resource landscape. 

Cognitive friction—arising from novelty, ambiguity, or task-induced strain —acts as a 

perturbation, displacing the system from its dynamic energetic equilibrium. The system’s 

adaptive response reflects a shift toward reducing internal conflict and minimizing energetic 

inefficiency. This behavior aligns with the principle of stationary action in physics and offers a 

physically grounded extension of the Free Energy Principle within a framework of bounded 

cognitive resources. 

Together, through theoretical consistency and empirical plausibility, establish CRT as a 

viable candidate for modeling adaptive cognition in real-world contexts. More empirical testing 

is of course required. As a current limitation here, CRT has not yet been validated with direct 

metabolic (e.g., PET) measurements, and further refinements and modifications to the present 

framework may be necessary to ground this theory in known neural physiology. 

Together, CRA and CRR define a resource-constrained cognitive manifold that evolves 

as a function of environmental pressure and internal resource availability. CRT formalizes this 

process using principles from gauge theory, statistical mechanics, and dynamical systems. CRT 



                                                                                                                                                         

197 

unifies structure, function, and behavior associated with cognitive systems under a common 

physically plausible framework and provides the mathematical machinery to reason about 

cognitive thermodynamics; neuroplastic adaptation as a response to induced strain on neural 

systems; synaptic remodeling as an energetically costly reallocation effort that mitigates friction 

in response to strenuous task demands; experience-induced plasticity as a structured trajectory 

through constrained cognitive state space, shaped by task engagement and system limitations; 

cognitive fatigue as resource depletion over time without replenishment, formally modeled as an 

increased spread or divergence. 
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7 LIMITATIONS AND FUTURE CONSIDERATIONS 

7.1 Strengths, Limitations of Analytical Modes 

7.1.1 Brain Network Analysis: Dorsal and Ventral Visual Streams 

This hypothesis-driven, anatomically grounded approach offered several advantages. By 

focusing on predefined inter-regional subnetworks—specifically the dorsal and ventral visual 

streams—we were able to constrain the analysis to functionally and topologically relevant areas 

implicated in visuomotor decision-making. This targeted strategy increased statistical power by 

maintaining a favorable N > number of ROIs ratio and reduced the risk of spurious group 

differences by narrowing the scope of comparisons. 

This approach is especially effective when prior theory or empirical data, such as percent 

BOLD signal change, provides a principled basis for defining task-relevant circuits. As 

demonstrated in earlier work by Jordan (2021), using functional activation to guide anatomical 

ROI selection enables focused testing of mechanistic hypotheses while avoiding unnecessary 

statistical burden across unrelated brain regions. 

However, this method comes with limitations. It may overlook broader network-level 

reorganizations or adaptations occurring outside of the predefined streams. Additionally, while 

functional ROI measures derived from fMRI provide robust summaries of regional co-activation, 

they lack the temporal resolution to capture finer-grained neural dynamics such as fast 

oscillatory coupling, cross-stream phase interactions, or transient signaling fluctuations. These 

limitations highlight the value of complementary modalities such as EEG or MEG, which offer 
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superior temporal precision and could reveal additional insight into dynamic reallocation patterns 

during decision-making. 

The interpretability of anisotropy-based tractography also imposes constraints, 

particularly in regions affected by crossing fibers or partial volume effects. To mitigate these 

issues, we employed quantitative anisotropy (QA)-based tractography, which outperforms 

traditional FA methods in preserving directional specificity and resolving complex fiber 

orientations. QA, implemented via q-space diffeomorphic reconstruction (QSDR), enhances 

sensitivity to true axonal pathways and improves anatomical plausibility. 

Despite these limitations, the results from Chapter 3 provide strong evidence for targeted 

neuroplasticity within the dorsal stream, a key network for visuomotor integration known to 

encode object trajectories(Cahill et al., 2024; Goodale & Milner, 1992; Tulloch & Pammer, 

2019), and demonstrate how sustained action video game play may drive adaptive reallocation of 

cognitive resources. This work lays a mechanistic foundation for the broader whole-brain 

analyses and theoretical developments explored in the chapters that follow. 

7.1.2 Whole Brain Analysis: SC-FC & SC-dFC 

Clarifying the methodological strengths and constraints of our tractography constrained 

investigation of functional and directed connectivity is essential for interpreting our findings and 

informing future research. Below, we outline key strengths for future studies that would like to 

continue this line of inquiry put forth by this dissertation, examining behaviorally relevant 

neuroplastic refinements due to long-term experience with playing action video games.  

Using white matter tractography to structurally constrain functional connectivity reduces 

false positives by limiting statistical comparisons to anatomically viable connections—i.e., those 
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supported by known white matter tracts. Unlike unconstrained full-brain FC analyses that test all 

possible pairwise combinations regardless of biological plausibility. Considering SC-FC and SC-

dFC improves neurobiological interpretability and dramatically reduces the total number of 

comparisons. 

Specifically, both SC-FC and SC-dFC analyses were computed across 13,818 valid 

statistical comparisons (excluding NaNs and self-connections). Under a null model with α = 

0.05, this would yield approximately 690 ± 26 false positives. In contrast, we observed 

substantially fewer: 498 for SC-FC (Z = –7.38, p = 1.53 × 10⁻¹³) and 592 for SC-dFC (Z = –3.77, 

p = 0.00016). The observed distributions deviate significantly from the null expectation, strongly 

indicating that these results reflect structured, behaviorally meaningful differences in 

connectivity rather than random noise. 

The behavioral relevance of these results is further supported by consistent and 

interpretable violin plot distributions for node degree and local efficiency strengthens confidence 

in this framework. Our findings align with known neuroanatomical pathways and task-relevant 

brain systems, reinforcing the utility and validity of SC-based filtering for detecting meaningful 

group-level effects. 

However, several limitations must be acknowledged. First, structural connectivity is 

inherently constrained by tractography’s parameter bounds—minimum fiber length, angular 

thresholds, and model resolution. This may result in the omission of short-range, sharply turning, 

or multi-synaptic pathways, especially within complex relay hubs like the thalamus. Moreover, 

SC-based filtering excludes connections between regions that are functionally coordinated but 

lack a directly detected structural edge. 



                                                                                                                                                         

201 

Tractography remains an indirect, model-based approximation of true anatomical 

architecture. While we mitigate some of its limitations by using quantitative anisotropy (QA)–

based tractography, which outperforms traditional FA in resolving crossing fibers and preserving 

directional specificity, no tractography method offers absolute anatomical ground truth. QA, 

based on q-space diffeomorphic reconstruction (QSDR), improves sensitivity to true axonal 

trajectories and bolsters anatomical plausibility. Nonetheless, tractography fidelity ultimately 

constrains the scope of SC-based connectivity. 

In parallel, functional ROI measures derived from fMRI are limited in temporal 

resolution and may fail to capture finer-grained dynamics such as fast oscillatory coupling or 

cross-network phase interactions. These limitations highlight the importance of complementary 

techniques, such as EEG or MEG, which offer the temporal precision necessary to characterize 

rapid reallocation events or state transitions that may underlie behaviorally relevant network 

adaptations. 

Finally, while SC-FC and SC-dFC analyses offer anatomical grounding, they may miss 

distributed patterns of functional change that fall outside direct white matter pathways. 

Integrating this method with complementary data-driven approaches, such as the rcPCA-based 

ROI selection strategy introduced in Chapter 5, offers a promising way to recover signal that 

may be overlooked by strict structural constraints. In this sense, SC-based filtering and data-

driven variance decomposition serve as synergistic tools for capturing both anatomically 

grounded and emergent features of neuroplastic adaptation. 
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7.1.3  Whole-Brain Analysis: rcPCA-Based ROI Selection 

The rcPCA-based ROI selection framework provided a scalable, data-driven approach to 

identifying the most behaviorally informative brain regions without relying on predefined 

anatomical constraints. Unlike structurally constrained methods, PCA operates agnostically to 

prior anatomical assumptions, enabling detection of latent patterns of structured intersubject 

variability across the whole connectome. 

By computing cumulative variance-weighted contributions across all components, the 

method reduces dimensionality while preserving interpretability. This significantly lowers the 

multiple comparisons burden that typically hinders full-brain ROI-wise testing, thereby 

improving both statistical power and the replicability of findings—especially in modestly sized 

samples where power and overfitting are major concerns. 

This approach is particularly valuable in contexts like the present study, where the 

number of connectivity features far exceeds the sample size—an inherent challenge in high-

dimensional neuroimaging data. By filtering ROIs based on structured variance, PCA mitigates 

this dimensionality mismatch, increasing statistical power and enhancing the robustness of 

downstream analyses. 

The secondary hypothesis guiding this study was that the PCA-based variance model 

would reveal behaviorally relevant structure–function couplings and connectivity patterns that 

help explain the observed ~190 ms response time advantage in gamers. This hypothesis was 

supported across multiple modalities, with PCA-derived ROIs yielding reproducible group 

differences and brain–behavior correlations that aligned with CRR’s predictions: a reallocation 
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of resources toward efficient visuomotor pathways and away from redundant or compensatory 

circuits. While these results are encouraging, the broader promise and potential for this method 

to generalize beyond the current study remain open for exploration. Given its statistical 

efficiency, adaptability, and interpretability, the PCA-based ROI selection framework may be 

especially useful for researchers navigating high-dimensional data with modest sample sizes, 

where structured variance filtering can sharpen signal, suppress noise, and reveal behaviorally 

meaningful patterns that might otherwise remain obscured. 

Our validation efforts revealed that Spearman rank significance was lost when 

contributions were limited to only the top 20 ROIs per component for dFC receiver and SC 

metrics, but fully recovered when cumulative contributions across all ROIs were used—

achieving machine-level precision across modalities once the number of included regions 

exceeded 90 (see Section 2.2.4.7 for details). This suggests that meaningful contributors may be 

more diffuse or non-monotonically distributed across components. While top-N truncation can 

highlight salient regions, it risks obscuring the global variance structure. Although PCA is linear, 

these discrepancies may indicate more complex or nonlinear variance patterns. Future work 

could apply nonlinear methods such as kernel PCA, manifold learning, or tensor decompositions 

to explore whether residual variance reflects interactions or features that escape linear separation. 

At a minimum, these findings underscore the importance of combining linear methods like PCA 

with downstream validation to ensure full coverage of relevant variance space. 

Although PCA is a linear method, the observed discrepancies suggest that some 

relationships may be nonlinear. Future work may benefit from extending this framework through 

nonlinear dimensionality reduction approaches, such as kernel PCA, manifold learning, or tensor 
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decomposition, which may capture residual variance not separable by linear projection. 

Additionally, dynamic PCA or cross-modal tensor decomposition could track time-varying 

changes in variance structure, enabling applications in adaptive neurotechnology such as brain–

computer interfaces (BCIs). 

The PCA-derived ROI framework is also compatible with complementary techniques. 

For example, ICA (Independent Component Analysis) could uncover orthogonal, statistically 

independent signals that may corroborate or expand on PCA findings. Furthermore, PCA-derived 

ROIs can serve as informative priors for joint ICA (jICA) in multimodal fusion analyses. Such 

integration could strengthen robustness and facilitate comparison with more established ICA-

based pipelines widely used in the neuroimaging community. 

Another useful extension would involve calculating the directional skew of each ROI by 

taking the difference between sender and receiver contributions in dFC (i.e., sender minus 

receiver). To enable comparisons across subjects and modalities, this difference could be 

normalized by the total contribution (i.e., sender plus receiver) yielding a normalized score in the 

range [–1, 1]. 

Thus, a Directional Skew Index (DI) to capture asymmetries in directed connectivity (dFC) 

would be defined as 

𝐷𝐼𝑖 =⁡ (
Sender𝑖 ⁡−⁡ _Receiveri⁡

Sender𝑖 ⁡+⁡Receiveri
). 

A value near +1 would indicate a strong net sender (information source), –1 a strong net 

receiver (information sink), and 0 a balanced node with symmetrical inflow and outflow. This 

normalized skew metric could offer deeper insight into causal asymmetries and dynamic role 
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shifts in directed connectivity. By recovering the directional specificity otherwise collapsed in 

total influence measures, it enhances interpretability and enables a more nuanced 

characterization of regional dominance in information flow, particularly in the absence of strong 

priors. 

This method offers ample room for future development. Incorporating demographic or 

clinical covariates (e.g., age, sex, IQ, education, symptom scores) and genetic markers such as 

single-nucleotide polymorphisms (SNPs) could help contextualize sources of variance and 

improve generalizability across populations. With further refinement, these tools could 

contribute to the development of diagnostic or prognostic frameworks in clinical neuroscience. 

Finally, benchmarking the PCA-derived ROI contributions against alternative feature selection 

strategies, including ICA, clustering algorithms, or model-derived importance scores from 

machine learning pipelines, may further clarify when and where this approach provides the most 

utility.  

Evaluating robustness across large, multi-site datasets is also critical for assessing 

generalizability and translational potential. Taken together, the PCA-based ROI selection 

framework offers a scalable, mathematically principled approach to dimensionality reduction of 

brain regions to those most informative as measured by contribution to explained variance in 

neuroimaging analysis. Expanding the framework to include pairwise ROI coupling or grouping 

ROIs into resting-state or task-defined networks may enable richer interpretations at the level of 

functional systems rather than individual regions. While rooted in a linear decomposition, it 

opens the door to nonlinear and multimodal extensions and serves as a flexible foundation for 

developing future tools that can adapt to the complexity and diversity of modern brain data.  
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An initial attempt was also made to extend the PCA-based ROI selection framework to 

the SC-FC constrained dataset used in Chapter 4. Preliminary results showed successful 

validation of the method, suggesting that PCA can meaningfully extract informative ROIs even 

within anatomically restricted connectivity matrices. This reinforces the idea that structurally 

constrained and data-driven methods are not mutually exclusive, but rather complementary. 

When combined, they may provide a principled, high-resolution approach for identifying 

functionally relevant regions with robust anatomical plausibility. This hybrid strategy, anchored 

in white matter pathways yet guided by structured signal variance, has strong potential as a 

future pipeline for mapping neuroplastic adaptations, both within this dataset and more broadly 

beyond it. 

7.1.4 CRT Limitations: Toward a Physiologically Grounded Framework 

While Cognitive Resource Theory (CRT) offers a physically grounded and mathematically 

rigorous account of adaptive cognition, its current formulation remains limited by the absence of 

direct metabolic validation. To establish CRT as a fully viable model of brain function, future 

studies must empirically link its core constructs—such as cognitive temperature, available 

energy, and reallocation dynamics—to measurable physiological processes. Several promising 

research avenues are outlined below. 

One critical next step is the use of metabolic imaging techniques such as FDG-PET and 

MR spectroscopy to quantify energy consumption during cognitive tasks. These methods offer a 

means to validate CRT’s central variables, including the internally available energy for 

reallocation, 𝐸𝐴(𝑡), and dynamic shifts in metabolic demand predicted by CRR. Comparing task 

and rest states using PET could reveal how cognitive strain modulates regional energy uptake, 
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offering a way to track reallocation events in vivo. Over time, this could evolve into a framework 

for identifying neurophysiological biomarkers corresponding to CRT variables, linking theory 

directly to observable metabolic changes in the brain. 

The study by Isomura et al. (2023), provided empirical support for the Free Energy 

Principle (FEP) spontaneous causal inference in cultured cortical networks, provides another rich 

opportunity for CRT-based reinterpretation. In that study, neural activity and plasticity evolved 

along a cost surface consistent with variational free energy minimization—demonstrating 

inference as a product of self-organized dynamics. CRT reframes this process in thermodynamic 

terms. Synaptic plasticity and firing threshold changes observed in vitro could be recast as 

energy reallocation processes over a constrained thermodynamic landscape. If successful, such 

modeling would offer a complementary account of inference grounded in measurable physical 

quantities like energy and entropy, and provide a clear bridge between CRT and FEP. 

Several EEG metrics align naturally with CRT constructs. For example, EEG power can 

serve as a proxy for energetic investment, coherence reflects emergent network efficiency, 

spectral entropy indexes internal uncertainty, and Granger causality quantifies directional 

resource flow. Monitoring changes in these features over time may enable dynamic estimation of 

neuroplastic potential and track shifts in reallocation energy throughout learning or task 

engagement. 

Using structural, functional, and perfusion MRI can also play a key role in further CRT 

validation. Applying tractography-constrained methods to training studies could reveal how 

connectivity reorganizes in response to repeated cognitive engagement. For example, increased 
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frontoparietal integration alongside reduced variance in visual regions may reflect energy-

efficient network tuning, consistent with CRT’s predictions. 

Perfusion MRI, may offer a means of measuring regional energetic cost, providing 

spatially resolved insight into where reallocation is occurring using hemodynamics as proxy for 

resource reallocation. When combined with behavior or electrophysiology, such imaging could 

generate detailed maps of CRT dynamics across multiple timescales and modalities. 

Altogether, these approaches support a multi-modal, multi-timescale strategy for empirical 

validation. They also point toward the future use of CRT in predictive modeling—for example, 

estimating when a system is likely to reallocate resources, when plasticity will peak, or how 

training protocols might be optimized. By integrating EEG, MRI, PET, and behavioral data, CRT 

could provide the foundation for principled, individualized models of cognitive function under 

constraint. 

Finally, the tractography-constrained PCA method developed in this dissertation offers a 

natural pipeline for use in longitudinal designs. Its consistency across modalities suggests it 

could be a valuable tool for tracking structural-functional reallocation over time and grounding 

CRT predictions in real data. Taken together, these directions form a coherent empirical roadmap 

for CRT. By combining thermodynamic theory with real-world physiology and multimodal data, 

future work can continue to refine, validate, and apply CRT accordingly. 

7.2 Participant Characteristics and Design Considerations 

Our study recruited a sample of healthy young adults, allowing us to isolate the effects of 

long-term video game playing while minimizing confounds. However, this design choice also 
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imposes certain limitations. First, the dataset used in this dissertation captures a cross-sectional 

snapshot of individuals with long-term action video game experience. As such, it does not permit 

inferences about the rate of neuroplastic adaptation over time, limiting the ability to make direct 

causal claims. Determining how these changes evolve would require longitudinal studies and 

clinical training interventions. Additionally, our gender distribution was not balanced between 

gamers and non-gamers, limiting our ability to analyze gender-specific differences in brain and 

behavioral responses. While participants were recruited from university campuses with 

presumably similar educational backgrounds, we did not explicitly screen for education levels or 

cognitive ability, meaning we cannot establish direct correlations between baseline cognitive 

performance and task outcomes. 

Nonetheless, a larger sample size would substantially benefit future research. Most 

importantly, greater statistical power would enable more sensitive testing of within-group brain–

behavior correlations, making it possible to determine whether observed effects are driven 

primarily by gamers, non-gamers, or both. These distinctions could clarify group-specific 

visuomotor strategies and reveal potential subtypes of neural adaptation associated with different 

gaming subgenres. Additionally, larger cohorts would support a more granular analysis of 

individual differences and enable more robust comparisons across gaming subgenres (Bediou et 

al., 2023). 

Another limitation is the absence of resting-state fMRI (rs-fMRI) data. Given the success 

of our PCA method in identifying behaviorally relevant ROIs, it would have been valuable to 

map these regions onto canonical resting-state networks and compare their connectivity profiles 

with rs-fMRI data.(Zhao et al., 2023) This could offer additional insight into how task-based 
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network dynamics relate to intrinsic functional organization. Unfortunately, resting-state scans 

were not collected as part of this study, limiting our ability to explore these relationships. 

Furthermore, although our sample size was sufficient for statistical analysis, future 

studies should expand sample diversity to enhance generalizability. Another limitation is the 

absence of resting-state fMRI (rs-fMRI) data, which prevents us from assessing spontaneous 

functional connectivity and determining whether gaming-related neuroplasticity extends beyond 

task-driven effects to broader network-level adaptations. Moreover, action video games 

encompass a range of subgenres (e.g., FPS, RTS, MOBA, BR), and while participants in this 

study played a mix of these, we cannot differentiate the unique neural effects of specific game 

mechanics. Future research should investigate whether distinct gaming subgenres contribute to 

differential cognitive and neuroplastic adaptations. 

Lastly, although prior research suggests that action video game experience may mitigate 

cognitive decline in older adults(Anguera JA; Basak et al., 2008), our study exclusively focused 

on young adults, leaving open the question of whether similar neuroplasticity effects extend 

across different age groups. Addressing these limitations in future studies will be crucial for fully 

characterizing the extent and generalizability of video game-induced cognitive and neural 

adaptations. 

Furthermore, our task required a simple button-press motor response. We assumed that 

motor response times alone were not significantly different across groups, focusing instead on 

perceptual decision-making. However, future studies employing event-related fMRI, 

electroencephalography (EEG), or magnetoencephalography (MEG) could help distinguish 

decision-making processes from motor execution components. 
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7.3 Future Directions 

This study establishes a foundation for understanding how long-term action video game 

(AVG) play shapes brain connectivity and supports more efficient visuomotor decision-making. 

Our findings—spanning structural, functional, and directed connectivity—demonstrate the power 

of theory-driven, multimodal neuroimaging analysis to uncover behaviorally relevant neural 

adaptations.  

Building on these results, several promising directions emerge for extending the scientific 

and theoretical impact of this work. These include refining experimental designs, incorporating 

complementary modalities, expanding to broader populations, and advancing Cognitive 

Resource Theory (CRT) toward a general framework for adaptive dynamics. The following 

themes outline key opportunities for future research across methodological, psychological, and 

theoretical domains. 

7.3.1 Advancing Video Game Research in Cognitive Neuroscience 

The present study highlights how action video games (AVGs) can serve as a powerful model 

for investigating cognitive adaptation and neuroplasticity. Building on these findings, several 

promising research directions emerge for advancing the field of video game neuroscience. These 

directions focus not only on improving experimental design and generalizability, but also on 

deepening our mechanistic understanding of how gameplay shapes brain function across 

timescales, modalities, and populations. The following priorities represent key opportunities for 

future investigation: 

Future studies should employ longitudinal designs to track neuroplastic changes over time 

and identify critical periods for skill transfer. Clinical training paradigms may further inform the 
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extent to which causal effects of AVG exposure can have on cognition and behavior. Direct 

cognitive assessments should be incorporated to evaluate whether observed neural adaptations 

translate into meaningful improvements in real-world behavior, enabling researchers to 

contextualize the extent and specificity of skill transfer. 

As noted in our limitations (see Section 7.2), the absence of resting-state fMRI (rs-fMRI) 

data limited our ability to assess whether AVG-induced adaptations extend beyond task-based 

activity. We encourage future studies to incorporate rs-fMRI to examine how intrinsic network 

coherence aligns with the CRA’s predicted dynamic equilibrium (see Section 6.2.2), and whether 

resting-state profiles retain signatures of prior CRR-driven plasticity. 

 This direction aligns with insights from Dr. Timothy Jordan’s dissertation (Jordan, 2021) 

which emphasized the importance of rest-to-task transitions in shaping 

cognitive network dynamics. If CRA reflects a dynamic equilibrium, its structure may exhibit 

attractor-like properties—potentially evolving in response to sustained cognitive demands. 

Resting-state profiles could therefore offer a retrospective map of reallocation history. Methods 

such as attractor reconstruction from rs-fMRI or EEG time-series may provide a novel means of 

tracking how prior CRR events alter a control group’s default resource configuration. 

Increasing sample diversity—across age, gender, and educational background—will 

improve generalizability and reveal subgroup-specific effects. Larger cohorts will also enable 

more granular analysis of individual variability in neural plasticity and training outcomes. 

Combining fMRI with EEG or MEG could help disambiguate perceptual, decisional, and 

motor components of task performance, as well as track fast-timescale reallocation events, 

attention shifts, or oscillatory dynamics relevant to CRR. 
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Video games—especially action video games, as investigated in this dissertation—should 

be recognized not only as tools for cognitive intervention or training, but as immersive 

environments capable of inducing experience-driven neuroplasticity that can be systematically 

measured and understood. When combined with theory-driven analysis and structurally 

constrained connectivity frameworks, they offer a powerful window into how the brain adapts to 

sustained periods of cognitive strain. 

7.3.1.1 Comparative Cognitive Training Models 

Action video game players exhibit cognitive adaptations comparable to those seen in  

other high-performance populations such as athletes, surgeons, or musicians—domains that also 

involve fast-paced decision-making, motor precision, and strategic flexibility. Unlike these 

traditional training environments, video games offer a uniquely accessible and experimentally 

tractable platform for studying sustained cognitive engagement under repeatable conditions. As 

such, AVGs may serve as a valuable benchmark for investigating experience-dependent neural 

optimization across domains. Comparative studies could clarify whether AVGs capture a 

generalizable class of resource reallocation strategies or represent a distinct model of 

performance optimization. This line of research may ultimately reveal common neural principles 

that underlie skill acquisition and expertise across cognitive domains. 

7.3.1.2  Rethinking Game Categorization: A Mechanics-Based Approach 

Recent studies in video game neuroimaging have increasingly attempted to parse 

cognitive effects by subgenre (e.g., FPS, RTS, MOBA, BR) (Bediou et al., 2023; Brilliant et al., 

2019). While this genre-based classification aligns with industry norms and participant 

familiarity, it often obscures the specific gameplay elements driving neuroplasticity(Bavelier & 

Green, 2019). Given the convergence of mechanics across genres and growing freedom in player 
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experience, future research may benefit from adopting a mechanics-driven taxonomy—

categorizing games based on core cognitive demands such as visuospatial tracking, rapid 

decision-making, working memory load, strategic planning, or emotional regulation. 

While this may complicate recruitment and classification in cross-sectional studies like 

the one presented in this dissertation, the results here strongly support moving beyond 

descriptive approaches. Notably, we propose that a player’s attitude toward gameplay—the 

degree to which they are actively engaged —may be a key moderator of neuroplastic outcomes 

which aligns with work suggesting a dependence on gamer style (Bavelier & Green, 2019). In 

line with CRT, when gameplay is experienced as “fulfilling”, or a ‘ path toward mastery’, the 

brain is more likely to allocate resources as an investment toward optimizing performance out of 

a optimizing performance out of an intrinsic desire to improve within a game state they 

genuinely enjoy playing , thereby reinforcing functional reorganization. 

Since games even within a given genre may elicit a distribution of overlapping game 

mechanics, disentangling overlapping cognitive demands elicited by these mechanics, including 

higher-order processes like problem-solving, overcoming functional fixedness, or adaptive 

responses to survival scenarios—will help identify which neural systems are recruited by which 

gameplay features. A mechanics-based framework offers greater specificity and theoretical 

precision, enabling researchers to design more targeted interventions and trace causal links 

between gameplay features and cognitive outcomes. Even in open-ended environments like 

sandbox games, players often set internally generated goals(Blanco-Herrera et al., 2019) that 

demand sustained focus and skill acquisition, whether it's constructing complex architecture, 

mastering in-game physics, or optimizing resource flows 
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From the perspective of Cognitive Resource Theory (CRT), these self-imposed 

challenges(Blanco-Herrera et al., 2019) still invoke goal-directed engagement and incremental 

mastery, prompting dynamic reallocation of neural resources over time. Thus, CRT remains 

applicable not only to structured, feedback-rich action games but also to more exploratory 

gameplay formats, as long as the player is motivated to improve within a personally meaningful 

task space. 

7.3.1.3 Psychological and Emotional Dimensions of Gameplay 

Beyond enhancing response time speed or accuracy, video games may also 

promote meaningful psychological and emotional adaptations. These effects represent a 

promising dimension of neuroadaptive gaming, with potential applications across both  

clinical and non-clinical populations. Emerging research suggests that gameplay may  

influence emotional regulation, social cognition, resilience, and identity development. Specific 

game mechanics and genres may differentially support these outcomes. Narratively-rich games 

can scaffold emotional learning and recovery through exposure to challenge, loss, and moral 

decision-making (Martínez-Tejada et al., 2021). Games that simulate adversity and perseverance 

may offer therapeutic value for coping strategy development and psychological resilience 

(Colder Carras et al., 2018). Multiplayer and cooperative games can support the practice of 

social behaviors in low-stakes settings, potentially improving emotional expression, empathy, 

and interpersonal communication (Kral et al., 2018). Open-ended “sandbox” games that reward 

flexible thinking and exploration may facilitate cognitive flexibility and lateral thinking (Blanco-

Herrera et al., 2019; Rahimi & Shute, 2021). 
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7.3.2 CRT-Informed Applications 

The Cognitive Resource Reallocation (CRR) framework introduced in this work explains 

how neural resources are dynamically redirected under cognitive load, producing the 

neuroplastic refinements observed in long-term action video game players. Building on this 

foundation, several key directions emerge for future investigation, each offering a path toward 

deeper insight into how experience-driven demands shape adaptive brain function. Future 

research could use CRT to guide the design of real-time cognitive tasks—or even interactive 

video games—that deliberately induce or modulate cognitive friction in specific neural systems, 

optimizing neuroplastic refinement with quantitative precision. 

 Furthermore, using EEG, MEG, or dFC metrics to track task-based CRR signatures, 

including power-based proxies of cognitive energy, would enable real-time modulation of neural 

resource allocation, with potential applications in neuroadaptive interfaces, rehabilitation, or 

high-performance training. These principles could also be abstracted and potentially extended 

toward more adaptive artificial intelligence models by providing these systems with updates 

regarding internal inefficiency and resource reallocation, framed as physically grounded 

optimization strategies. Such systems could adjust how they process user queries in real time—

pausing, redirecting effort, or seeking clarification based on internal friction—mirroring how 

human cognition adapts under uncertainty and load. 

7.3.3 Towards Generalization of Cognitive Resource Theory 

More broadly, Cognitive Resource Theory (CRT) represents a specific case within a 

larger theoretical framework developed by the author, which also includes Neural Resource 

Theory (NRT) and Dynamic Resource Theory (DRT). These generalizations extend CRT’s 
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principles beyond cognition to broader neural and physical systems, but lie beyond the scope of 

the present work and are reserved for future investigation. As presented here, CRT anchors 

cognition in physical law and enables precise, testable predictions. Its broader scientific role will 

be defined through continued empirical testing, cross-disciplinary application, and integration 

within more generalized models of brain function and adaptive behavior. NRT formalizes 

resource dynamics across the entire nervous system, treating cognition as a partitioned subset of 

neural activity embedded within a broader field of structural and metabolic constraints. Building 

upon Cognitive Resource Theory (CRT), NRT extends the framework from functionally defined 

cognitive energy to encompass all measurable synaptic, glial, and neuromodulatory interactions 

across both central and peripheral nervous system domains. This theoretical shift not only 

grounds CRT in concrete biophysical substrates but also enables future simulations of system-

level trade-offs with explicit thermodynamic structure—paving the way for a unified resource-

based model of neural function and adaptation. DRT generalizes the principles of CRT and NRT 

into a thermodynamic, field-theoretic account of adaptation in emergent and self-organizing 

systems across domains and scales. While CRT and NRT focus on cognitive and neural domains, 

DRT extends to self-organizing systems more broadly exhibiting structured emergence, 

including biological, computational, and physical networks. It models adaptation as the 

interaction between a Resource Allocator (RA), which governs global energy distribution, and a 

Resource Reallocator (RR), which drives local, time-dependent reorganization in complex 

systems. By incorporating gauge symmetries, statistical mechanics, and free energy geometry, 

DRT formalizes how complex systems internally redistribute energy to maintain structure, adapt 

to perturbations, and support emergent behavior. This framework offers a physically grounded 

language for modeling adaptation and emergence across scales. 
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8 CONCLUSION 

This dissertation has presented three complementary investigations into how long-term 

action video game (AVG) play reshapes brain connectivity through neuroplastic refinement, 

culminating in measurable enhancements in visuomotor decision-making. Each chapter applied a 

distinct methodological lens—regional brain network analysis of the visual streams, whole-brain 

tractography-constrained functional connectivity, and PCA-based data-driven filtering—unified 

by a shared goal: to understand how sustained cognitive demand shapes neural signaling through 

adaptive plasticity. Together, these studies offer converging evidence for a refinement process in 

gamers that optimizes cognitive resource deployment, reduces processing bottlenecks, and 

supports faster, more efficient action selection. 

From a methodological standpoint, this work demonstrates the value of adopting a 

multimodal connectivity framework. Chapter 3 tested targeted hypotheses in the dorsal visual 

stream, using anatomically grounded ROIs and both structural and functional measures to 

validate task-relevant adaptations. Chapter 4 expanded this analysis to the whole brain, using 

tractography-constrained connectivity matrices to ensure biological plausibility while reducing 

statistical burden by focusing only on structurally viable pathways. Chapter 5 introduced a novel 

PCA-based filtering approach that enabled a fully data-driven sweep across connectivity space, 

identifying high-information regions without presupposed anatomical constraints and 

significantly enhancing statistical power. While each approach has its own strengths and 

limitations, their integration within a unified research program provides a comprehensive map of 

the neural adaptations underlying expert visuomotor performance. 
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Critically, the findings across all three studies align with the predictions of Cognitive 

Resource Reallocation (CRR), a hypothesis introduced in this dissertation to explain how 

behaviorally relevant brain networks become optimized through repeated exposure to high-

demand cognitive conditions. The observed shift in gamers—from early sensory and feedback 

systems to more streamlined, anticipatory circuits—supports CRR’s model of targeted energetic 

investment for efficient task execution. The convergence of structural, functional, and directed 

effects in key hubs (e.g., frontoparietal, cerebellar, and dopaminergic circuits) further reinforces 

the biological interpretability of CRR as a mechanistic framework for dynamic neural adaptation. 

As the concept matured, CRR laid the foundation for a broader theoretical extension: 

Cognitive Resource Theory (CRT). In Chapter 6, CRT formalized the principles of CRR in terms 

of thermodynamic constraints, energy allocation, entropy production, and dynamic 

optimization—offering a physics-grounded model of cognition. It describes how energetic 

availability and system structure constrain the evolution of cognitive processes, making adaptive 

efficiency a core organizing principle. As with any theory, the ultimate measure of CRT will lie 

in its falsifiability and empirical precision—which the author looks forward to testing in future 

work. 

This dissertation also proposes theoretical frameworks that generalize and extend CRT in 

Section 7.3.3. For example, although beyond the scope of this dissertation, Neural Resource 

Theory (NRT) extends beyond cognition to describe how energy and information are 

dynamically organized across all neural systems—including synaptic, glial, and metabolic 

components of the central and peripheral nervous system. Whereas CRT focuses on the 

functional organization of cognition, NRT offers a broader foundation for understanding neural 
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adaptation. Within this hierarchy, CRR can be understood as a specific instantiation of a more 

general principle that biological systems evolve by reallocating finite resources in response to 

environmental and internal constraints. 

Finally, this trilogy of work reframes action video games not merely as tools for cognitive 

enhancement but as methodological platforms for studying experience-driven neuroplasticity 

under repeatable, ecologically valid conditions. When paired with theory-driven analysis and 

robust analytical tools, AVGs offer a powerful experimental testbed for modeling high-

performance cognitive states—illuminating how the brain dynamically reallocates its internal 

resources in pursuit of mastery. In sum, this work contributes a suite of practical tools, validated 

methods, and foundational theory to the emerging science of cognitive optimization. It shows not 

only how to detect change—but how to understand it, and ultimately, how to shape it for the 

benefit of all. 
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